

INTRODUCTION

Because the octanol/water partition coefficient indicated that Santicizer 160 has a moderate potential to accumulate in fish and because it is currently under government scrutiny, a fish bioconcentration study was conducted. This study estimates the potential for S-160 to accumulate in fish in the natural environment. The rate and extent of bioconcentration of 14C-residues were measured in bluegill continuously exposed to 14C-labeled S-160 during a definitive 17-day exposure period, a preliminary/kinetic 7-day exposure period and two kinetic 7-day exposure periods. Relative distributions of the residue between wholefish, muscle, and viscera were determined for the fish samples collected during the 17-day definitive study. Following exposure, the rate and extent of clearance or depuration of the residue from the fish were examined after placing exposed fish in a clean water aquarium.

Summary.

c_160 has a low potential to accu-

into in fish. The observed brotoncers from the octanol/water partition

coefficient (510). This difference may be edible portion of the fish, 5-100 fish. Based on a BCF of 29 in muscle, the edible portion of the fish, 5-100 has a negligible potential to accumulate. The BCF in viscera, although somewhat higher than in wholefish and muscle, is of little concern because the 14C-residue probably represents 5-160 metabolites or 5-160 adsorbed on food in the gastrointestinal tract.

MATERIALS AND METHODS

Procedures used in the bioconcentration study closely followed those outlined in the ASTM Proposed Standard Practice for Conducting Bioconcentration Tests with Fishes and Saltwater Bivalve Molluscs Draft No. 9 (April 13, 1979). All deviations from these procedures were noted in the following sections.

Test Fish

Bluegill (Lepomis Macrochirus) used in the study were received from Osage Catfisheries in Missouri on July 26, 1979. All test fish were held in a culture tank at 18°C and observed for at least 14 days prior to testing. During this period, the fish received a standard fish food (Purina No. 3) ad libitum. Throughout the study, the fish were fed once a day in the morning. On sampling days, the fish were fed after collecting the samples. Mortality during the fourteen days prior to the initiation of the test was less than 1% indicating that the fish were in good condition. Fish were acclimated to the test water temperature of 22°C prior to starting the test. The mean weight for the fish used in this test was 0.915 g.

II. <u>Test System</u>

A continuous flow diluter system described by W. J. Adams, et al., ES-78-SS-21, was used to deliver water to the control aquarium and water plus three nominal concentrations of S-160 (2.22, 22.2, and 222 µg/l) to the test aquaria. Dimethylformamide (DMF) was used as a carrier solvent for S-160. The S-160/DMF stocks for 2.22, 22.2, and 222 µg/l contained 6.66 mg/l, 66.6 mg/l, and 666 mg/l, respectively. They were pumped at rates of 5.2 ml/hr, 2 ml/hr, and 2 ml/hr, respectively, to the mixing cell just beneath the surface of the water. Diluent water, dechlorinated city water (Table 1), entered the mixing cell at rates of 15.6 l/hr, 6 l/hr, and 6 l/hr, respectively. Water and S-160 flowed continuously and were mixed by magnetic stirrers placed under each mixing cell. Water flowed directly from the mixing chamber through glass tubing to glass test aquaria containing 100 1, 30 1, and 30 1, respectively. Flow rates allowed 3.74 tank volume replacements per day for the 2.22 µg/l concentration and 4.8 tank volume replacements per day for the 22.2 µg/l and 222 µg/l test concentrations. The volumes used during exposure allowed loading equal to 1.4 fish/l H₂O:

For the preliminary study, 2.22 $\mu g/l$ exposure concentration, dilution water flowed at 6 l/hr and toxicant was pumped at 2 ml/hr. There were 4.8 tank volume replacements per day in the 30 liter aquarium. The loading was equal to 1.4 fish/l H_2O as in the definitive and kinetic studies.

III. Test Compound

Ten vials of $^{14}\text{C-labeled}$ S-160 with a total activity of 882.02 µCi, were received from H. Yepez, MIC Applied Sciences on August 7, 1979. Each flask contained 2.0 to 3.6 mg of S-160. The specific activity was 9.5 mCi/mM. All stocks were prepared using DMF. The cold S-160 used in the stocks was Lot No. QK06511. The amount of $^{14}\text{C-labeled}$ S-160 and cold S-160 in each stock is listed below in µCi/l and mg/l, respectively. The $^{14}\text{C-S-160}$ was uniformly ring labeled on the phthalic ring. The radiochemical purity was 97% (Hines and Kaelble, 1979).

Exposure	Stock	μ C1/l	mg/1 Cold
Concentration	Concentration mg/l	14 <u>C-Labeled S-160</u>	S-160
2,22	6.66	202.52	0
22,2	55.6	202.52	59.94
22,2	666	202.52	659.34

IV. Procedure

The preliminary test began on August 8, 1979, by exposing twenty-four bluegill to 2.22 μ g/l 14 C-labeled S-160 in an aquarium that was equilibrated at 2.22 μ g/l. The S-160 concentration in the water was checked on Day 0, August 8, 1979. The concentration of DMF did not exceed 0.33 mg/l, (0.033%). Fish and water were sampled and analyzed for S-160

II. Test System

A continuous flow diluter system described by W. J. Adams, et al., ES-78-SS-21, was used to deliver water to the control aquarium and water plus three nominal concentrations of S-160 (2.22, 22.2, and 222 µg/l) to the test aquaria. Dimethylformamide (DMF) was used as a carrier solvent for S-160. The S-160/DMF stocks for 2.22, 22.2, and a carrier solvent for S-160. The S-160/DMF stocks for 2.22, 22.2, and a carrier solvent for S-160. The S-160/DMF stocks for 2.22, 22.2, and a carrier solvent for S-160. The S-160/DMF stocks for 2.22, 22.2, and a carrier solvent for S-160 mg/l, and 656 mg/l, and 656 mg/l, respectively. They were pumped at rates of 5.2 ml/hr, 2 ml/hr, and 2 ml/hr, respectively, to the mixing cell just beneath the surface of the water. Diluent water, dechlorinated city water (Table 1), entered the mixing cell at rates of 15.6 l/hr, 6 l/hr, and 6 l/hr, respectively. Water and S-160 flowed continuously and were mixed by magnetic stirrers placed under each mixing cell. Water flowed directly from the mixing chamber through glass tubing to glass test aquaria containing 100 l, 30 l, and 30 l, respectively. Flow rates allowed 3.74 tank volume replacements per day for the 2.22 µg/l and centration and 4.8 tank volume replacements per day for the 22.2 µg/l and 222 µg/l test concentrations. The volumes used during exposure allowed loading equal to 1.4 fish/l H₂O:

For the preliminary study, 2.22 $\mu g/l$ exposure concentration, dilution water flowed at 6 l/hr and toxicant was pumped at 2 ml/hr. There were 4.8 tank volume replacements per day in the 30 liter aquarium. The loading was equal to 1.4 fish/l H_2O as in the definitive and kinetic studies.

III. Test Compound

Ten vials of $^{14}\text{C-labeled S-l60}$ with a total activity of 882.02 pCi, were received from H. Yepez, MIC Applied Sciences on August 7, 1979. Each flask contained 2.0 to 3.6 mg of S-l60. The specific activity was 9.5 mCi/mM. All stocks were prepared using DMF. The cold S-l60 used in the stocks was Lot No. QK05511. The amount of $^{14}\text{C-labeled}$ used in the stocks was Lot No. QK05511. The amount of $^{14}\text{C-labeled}$ S-l60 and cold S-l60 in each stock is listed below in pCi/l and mg/l, respectively. The $^{14}\text{C-S-l60}$ was uniformly ring labeled on the phthalic ring. The radiochemical purity was 97% (Hines and Kaelble, 1979).

Exposure	Stock	μCi/1	πg/1 Cold
Concentration	Concentration mg/l	14c-Labeled S-16D	<u>S-160</u>
2.22	6.55	202.52	0
22.2	66.6	202.52	59.94
222	566	202.52	659.34

IV. Procedure

The preliminary test began on August 8, 1979, by exposing twenty-four bluegill to 2.22 $\mu g/l$ 14C-labeled S-180 in an aquarium that was equilibrated at 2.22 $\mu g/l$. The S-160 concentration in the water was checked on Day 0, August 8, 1979. The concentration of DMF did not exceed 0.33 mg/l, (0.033%). Fish and water were sampled and analyzed for S-160

based on ¹⁴C-measurements over a seven day uptake and 14 day depuration period. Results are summarized in Tables 2 and 3.

The 17 day definitive test (2.22 $\mu g/I$) and two 7 day kinetic studies (22.2 and 222 $\mu g/I$) began on August 13, 1979. In all 3 tests, the concentration of DMF did not exceed 0.33 ml/I (0.033%). One hundred-twenty fish were placed in the definitive test aquarium. Twenty-four twenty fish were placed into each of the 2 kinetic test aquaria. Fish and fish were sampled during the test to monitor the S-160 exposure, water were sampled during the test to monitor the S-160 exposure, accumulation and depuration, based on $^{14}\text{C-residue}$. Tables 4,5,6,7,8 accumulation and depuration of water and tissue analysis for S-160 and 9 summarize the results of water and tissue analysis for S-160 concentration in the definitive, kinetic 1, and kinetic 2 tests, respectively.

V. <u>Sample Schedule</u>

Sampling times were determined based on the predicted time to steady state (SS). Using the octanol/water partition coefficient and the water solubility, an approximate time to steady state (equilibrium) was calculated using the following two formulas: 1) S=3.0/antilog was calculated using the following two formulas: 1) S=3.0/antilog (0.43 log W-2.11); 2) S=3.0/antilog (-0.414 log P + 0.122) where (0.43 log W-2.11); 2) S=3.0/antilog (-0.414 log P + 0.122) where water to steady state in hours, W= water solubility, and P= octanol/water partition coefficient (Hamelink and Eaton 1979).

The following sampling points were chosen to monitor fish bloaccumulation.

INE TOLLOWING Samp	
Concentration 2.22 Definitive	Sampling Points Uptake 0.5, 1,2,4,7,14,16,18,21 days Depuration 1,2,4,7,14,18,21 days
2.22 Preliminary	Uptake 1,4.7, days Depuration 1,4,7.14 days
22.2 Kinetic 1	Uptake 1,4,7, days Depuration 1,4,7,14 days
222 Kinetic 2	Uptake 1,4,7, days Depuration 1,4,7,14 days

During the definitive study, 6 fish were collected at each sampling time. Fish collected were divided randomly into 2 groups of three fish. One group was analyzed as wholefish. The second group was dissected and muscle and viscera samples were analyzed. Muscle samples were obtained by removing the head, tail, and viscera. Viscera included all organs by removing the head, tail, and viscera. Viscera included all organs in the gut region including gastrointestinal track, kidneys, spleen in the gut region including gastrointestinal track, kidneys, and viscera) gall bladder, and liver. All samples (wholefish, muscle, and viscera) were weighed to obtain wet weight, placed in marked petri dishes, and dried at 90°C.

For the preliminary test and two kinetic tests, three fish were collected at each sampling time (except day 21 of each test when 5,6, and 4 fish

were removed from the preliminary, kinetic 1 and kinetic 2 tests, respectively). All samples were analyzed individually as wholefish. During uptake, two 2 ml water samples were taken for radioassay at each sampling time. Water samples were also collected on day 0 for all tests and on day 11 for the definitive test. Water samples were placed in scintillation vials containing 16 ml of instagel scintillation cocktail and counted for 10 minutes in a Nuclear Chicago Isocap 300 scintillation counter.

VI. Residue Analysis for Water Samples

Verification of the actual concentration of S-160 in the test aquaria water was determined on day 7, August 20, 1979, by taking two 100 ml grab samples of water from the aquarium and extracting them one time each with 10 ml of nanograde hexane. Hexane extracts were analyzed by the gas chromatographic procedures for analysis of phthalates outlined by Hicks, et al., in ES-78-SS-8.

VII. Residue Analysis for Fish Tissue Samples

Verification of the actual concentration of 5-160 in the wholefish tissue samples was made by sampling fish during steady state on day 17, September 3, 1979. Six fish were collected, weighed, placed on a marked petri dish and frozen. Analysis is currently in progress and results will be reported in Environmental Sciences Special Study ES-80-55-5.

VIII. Radioassay

Triplicate dried samples of viscera, muscle, and wholefish were placed in combusto conesTM together with 0.30 ml of CombustaidTM and were combusted in a Packard Model B306 Tri-CarbTM sample oxidizer. The resulting ¹⁴CO₂ was trapped in Carbo-sorb®, flushed with Permaflour® V into a counting vial, and counted for 10 minutes in the scintillation counter. Oxidizer, chemicals, and supplies were purchased from Packard Instrument Company. Recovery of ¹⁴C was 92.8% to 100.8% based on analysis of standards. Memory (¹⁴C carryover to next combusted sample) ranged from 0.011% to 0.031%.

IX. Example Calculations

Computer printout for the scintillation counter gave disintegrations per minute (DPM), corrected for efficiency, and micrograms of S-160 The following equation was used to calculate the water concentration.

 $\mu g^{-14}C-S-160/2 ml = 1000 ml/l = 14 factor = <math>\mu g S-160/l$

The factor was based on the mix of hot material to cold material in each stock. The 2.22 $\mu g/l$ concentration contained only $^{14}C-labeled$ material; therefore, the factor was 1. The 22.2 and 222 $\mu g/l$ concentrations contained 10:1 and 100:1 ratios of cold S-160: hot S-160, therefore, the factors were 10 and 100, respectively. Calculations

were removed from the preliminary, kinetic 1 and kinetic 2 tests, respectively). All samples were analyzed individually as wholefish. During uptake, two 2 ml water samples were taken for radioassay at each sampling time. Water samples were also collected on day 0 for all tests and on day 11 for the definitive test. Water samples were placed in scintillation vials containing 16 ml of instagel scintillation cocktail and counted for 10 minutes in a Nuclear Chicago Isocap 300 scintillation counter.

VI. Residue Analysis for Water Samples

Verification of the actual concentration of S-160 in the test aquaria water was determined on day 7, August 20, 1979, by taking two 100 ml grab samples of water from the aquarium and extracting them one time each with 10 ml of nanograde hexane. Hexane extracts were analyzed by the gas chromatographic procedures for analysis of phthalates outlined by Micks, et al., in ES-78-SS-8.

VII. Residue Analysis for Fish Tissue Samples

Verification of the actual concentration of S-160 in the wholefish tissue samples was made by sampling fish during steady state on day 17, September 3, 1979. Six fish were collected, weighed, placed on a marked petri dish and frozen. Analysis is currently in progress and results will be reported in Environmental Sciences Special Study ES-80-SS-5.

VIII. Radioassay

Triplicate dried samples of viscera, muscle, and wholefish were placed in combusto conesTM together with 0.30 ml of CombustaidTM and were combusted in a Packard Model B306 Tri-CarbTMsample oxidizer. The resulting 1°CO₂ was trapped in Carbo-sorb®, flushed with Permaflour® V into a counting vial, and counted for 10 minutes in the scintillation counter. Oxidizer, chemicals, and supplies were purchased from Packard Instrument Company. Recovery of 1°C was 92.8% to 100.8% based on analysis of standards. Memory (1°C carryover to next combusted sample) ranged from 0.011% to 0.031%.

IX. Example Calculations

Computer printout for the scintillation counter gave disintegrations per minute (DPM), corrected for efficiency, and micrograms of S-160 The following equation was used to calculate the water concentration.

 $\mu g^{-1} + C - S - 160/2 \text{ m}$ X 1000 ml/l X factor = $\mu g S - 160/1$

The factor was based on the mix of hot material to cold material in each stock. The 2.22 $\mu g/l$ concentration contained only $^{14}C-labeled$ material; therefore, the factor was 1. The 22.2 and 222 $\mu g/l$ concentrations contained 10:1 and 100:1 ratios of cold S-160: hot S-160, therefore, the factors were 10 and 100, respectively. Calculations

for tissue samples used the following equation:

 μ g 14 C-S-160/sample X 1/sample weight (mg) X I X 10 6 X Factor = μ g S-160/kg fish tissue

The same factors were used as for the water sample calculations.

RESULTS AND DISCUSSION

THE CONTROL OF STREET OF STREET STREET, STREET STREET, STREET STREET, STREET, STREET, STREET, STREET, STREET,

During the uptake portion of the study, the average exposure concentration for each test was as follows:

Concentration	X Exposure	Range	Wholefish BCF
2.22 Definitive	2.96 µg/l	2.30+4.19	187.65
2.22 Preliminary	2.62 µg/l	2.23+2.82	135.40
22.2 Kinetic	23.11 µg/l	3.2 +35.3	92.15
222 Kinetic	208.08 µg/l	26+278	96.53

The exposure concentrations were verified using gas chromatography. These results are listed in Table 10 along with the radioanalysis concentrations measured on the same day. Fluctuations in exposure concentrations coincided with malfunctions of the manostat pump. On August 17, day 4, the exposure concentration of S-160 in the definitive test water dropped to 0.72 μ g/l. The concentration of S-160 in the fish sampled that day was significantly lower than on previous sample days (61.70 μ g/kg fish vs. 1191.04 μ g/kg fish). In calculating the BCF and other parameters, day 4 was considered to be day 0 of uptake. The Biofac program was used to calculate the BCF for both sets of data, day 0+21 and day 4(0)+21(17). The derived BCFs were similar, 141.53 and 187.65 for wholefish.

The oxygen, pH, alkalinity, hardness, and temperature ranged from 2.4 to 7.0 mg/l, 6.6 to 7.0, 18 to 30 mg/l, 105 to 120 mg/l, and 22° to 23°C, respectively. These values indicate the water quality was satisfactory throughout the study.

The survival of the controls was excellent. There were no mortalities during the test in the controls or any of the test aquaria.

For the bluegill bioconcentration study with S-160, 17 days was a sufficient amount of time for 5-160 to reach steady state in the fish tissues. This exposure period was selected based on the aqueous solubility and the octanol/water partition coefficient for S-160 and a 7 day preliminary exposure of bluegills to 2.22 $\mu g/1$ S-160. Two additional 7 day studies at concentrations of 22.2 and 222 $\mu g/1$ were conducted to assess the effect of exposure concentration on bioconcentration of S-160.

Analysis of the wholefish, muscle, and viscera were used to calculate BCF, K_1 , K_2 , T_2 clearance, and time to 90% SS by entering the derived values in the computer using the Dow Biofac program (Blau and Agin, 1978). All values are listed in the table below. The Biofac program graphs the data, calculates a

for tissue samples used the following equation:

 $\mu g^{-14}C-S-160/sample X - 1/sample weight (mg) X 1 X 106 - X Factor = <math>\mu g - 160/kg$ fish tissue

The same factors were used as for the water sample calculations.

RESULTS AND DISCUSSION

During the uptake portion of the study, the average exposure concentration for each test was as follows:

Concentration	X Exposure	Range	Wholetish BCF
2.22 Definitive	2.96 µg/l	2.30+4.19	187.65
2.22 Preliminary	2.62 µg/l	2.23+2.82	135.40
22.2 Kinetic	23.11 µg/l	3.2 →35.3	92.15
222 Kinetic	208.08 µg/l	26+278	96.53

The exposure concentrations were verified using gas chromatography. These results are listed in Table 10 along with the radioanalysis concentrations measured on the same day. Fluctuations in exposure concentrations coincided with malfunctions of the manostat pump. On August 17, day 4, the exposure concentration of S-160 in the definitive test water dropped to 0.72 μ g/l. The concentration of S-160 in the fish sampled that day was significantly lower than on previous sample days (61.70 μ g/kg fish vs. 1191.04 μ g/kg fish). In calculating the BCF and other parameters, day 4 was considered to be day 0 of uptake. The Biofac program was used to calculate the BCF for both sets of data, day 0+21 and day 4(0)+21(17). The derived BCFs were similar, 141.53 and 187.66 for wholefish.

The oxygen, pH, alkalinity, hardness, and temperature ranged from 2.4 to 7.0 mg/l, 6.6 to 7.0, 18 to 30 mg/l, 105 to 120 mg/l, and 22° to 23°C, respectively. These values indicate the water quality was satisfactory throughout the study.

The survival of the controls was excellent. There were no mortalities during the test in the controls or any of the test aquaria.

For the bluegill bioconcentration study with S-160, 17 days was a sufficient amount of time for S-160 to reach steady state in the fish tissues. This exposure period was selected based on the aqueous solubility and the octanol/water partition coefficient for S-160 and a 7 day preliminary exposure of bluegills to 2.22 μ g/l S-160. Two additional 7 day studies at concentrations of 22.2 and 222 μ g/l were conducted to assess the effect of exposure concentration on bioconcentration of S-160.

Analysis of the wholefish, muscle, and viscera were used to calculate BCF, K_1 , K_2 , T_2 clearance, and time to 90% SS by entering the derived values in the computer using the Dow Biofac program (Blau and Agin, 1978). All values are listed in the table below. The Biofac program graphs the data, calculates a

best fit line as well as giving the above parameters. An example of the graph, Figures 1, 2, 3, 4, 5 and 6 and printout of data, Figures 7 and 8 are included. Furthermore, the Biofac program can determine rate constants and calculate a BCF from short term exposure data. As a result, kinetic tests can be run at lower cost and can be used to predict BCFs for different exposure concentrations. The rate constants, K_1 and K_2 , allow prediction of the concentration of a chemical in fish as related to exposure time and concentration, as well as, how quickly the fish will clear the chemical when exposed to clean water.

Study	Exposure ppb	BCF	<u> </u>	_K ₂ _	90% \$S	<u>T∳ Days</u>
17 Day Def. W.F. 17 Day Def. Mus. 17 Day Oef. Vis. 7 Day Prelim. W.F.	2.22 2.22 . 2.22 2.22	28.54 1693.25	143.40 17.38 1750.19 315.07	0.61 1.03	3.01 3.78 2.23 0.99	0.91 1.14 0.67 0.30
7 Day Kin 1 W.F. 7 Day Kin 2 W.F.	22,2 222	92.15	179.09 224.14	1.94	1.18 0.99	0.36 0.30

 K_1 is a rate constant characterizing the uptake of chemical from water by fish in parts water/day/parts fish.

 K_2 is a rate constant characterizing the clearance of chemical from fish in day" 1 units.

The sand the

The hand calculated steady state BCFs for the 17 day definitive study (189.70 for wholefish, 28.26 for muscle and 1853.26 for viscera) agreed well with the BCFs calculated using the Biofac program. Because of speed, accuracy and the additional information obtained, the Dow Biofac computer program, was used for analysis of the bioconcentration data.

Based on the results of the wholefish analysis, S-160 has a low potential to bioconcentrate in fish. The observed BCF is considerably less than that predicted from the octanol/water partition coefficient (510). This difference may be attributed to metabolism of S-160 by the fish. In the muscle, the consumed portion of the fish, the bioconcentration potential is negligible. The maximum observed concentration in the muscle (121.66 μ g/kg) is also insignificant and well below health standards. Although the BCF for viscera was higher than in wholefish and muscle, it is of low concern because most of the ¹⁴C-residue found is presumed to be metabolized S-160 or adsorbed on food in the gastrointestinal tract. There was a good correlation between the wholefish BCF of the preliminary test and definitive test. This may allow us to use short term kinetic tests to estimate the bioconcentration potential of other chemicals. The two kinetic tests indicated there was a tendency for the S-160 bioconcentration factor to decrease as the exposure concentration increased.

The BCF calculated at the MIC laboratory (188) is significantly different from a BCF previously calculated at the EG&G Bionomics laboratory in Wareham, Mass. (663) (Barrow et.al.). A greater amount of radiochemical impurities in the

S-160 used in the Bionomics study may have been responsible for this difference. These impurities may have been adsorbed or metabolized more readily by the fish, resulting in a higher apparent S-160 bioconcentration in the Bionomics study. Presently, we are looking more closely at the variables associated with each study in order to explain this discrepancy.

S-160 used in the Bionomics study may have been responsible for this difference. These impurities may have been adsorbed or metabolized more readily by the fish, resulting in a higher apparent S-160 bioconcentration in the Bionomics study. Presently, we are looking more closely at the variables associated with each study in order to explain this discrepancy.

1

3

-ink

13.

ž

Table 1. Average water quality characteristics of the dilution (city) water.

Characteristic	City Water Measurement
Alkalinity (mg/1 CaCO3)	41 130
Hardness (mg/l CaCO3)	6.90
pH (median)	0.031
Aluminum (mg/l Al)	0.35
Amonia-total (mg/l N)	<0.001
Amonia-unionized (mg/l NH4)	0.010
Antimony (mg/1 Sb)	0.021
Barium (mg/l B)	<0.001
Beryllium (mg/l Be)	6.002
Cadmium (mg/1 Cd)	56.8
Calcium (mg/1 Ca)	30.5
Chloride (mg/1 Cl-)	0.008
Chromium (mg/1 Cr)	0.002
Cobalt (mg/l Co)	0, 004
Copper (mg/1 Cu)	0.98
Fluoride (mg/1 F-)	0.025
Iron (mg/l Fe)	0.013
Lead (mg/l Pb)	2.80
Magnesium (mg/1 Mg)	0.001
Manganese (mg/l Mn)	0.009
Molybdenum (mg/1 Mo)	0.031
Nickel (mg/l Ni)	0.54
Nitrate + Nitrite (mg/l N) Phosphorous (mg/l P)	0.010

Table 1 (Continued)

Characteristic	City Water Measurement
((((((((((((((((((((6.3
Silicon (mg/1 Si)	0,005
Silver (mg/l Ag)	83.2
Sodium (mg/1 Na)	175.4
Sulfate (mg/1 SO4)	0.16
Strontium (mg/1 Si)	0.007
Tin (mg/1 Sn)	0.001
Titanium (mg/l Ti)	≤0.5
Total Organochlorine (ug/l)	≤0.05
Total Organophosphorous (ug/1)	0.070
Vanadium (mg/1 V) Zinc (mg/1 Zn)	0.016

Table 1 (Continued)

Characteristic	City Water Measurement
Silicon (mg/l Si) Silver (mg/l Ag) Sodium (mg/l Na) Sulfate (mg/l SO4) Strontium (mg/l Si) Tin (mg/l Sn) Titanium (mg/l Ti) Total Organochlorine (ug/l) Total Organophosphorous (ug/l) Vanadium (mg/l V)	6.3 0,005 83.2 175.4 0.16 0.007 0.001 ≤0.5 ≤0,05 0.070

TABLE 2. MEASURED 14C-RESIDUES CALCULATED AS S-160 IN WATER DURING A 7-DAY (PRELIMINARY) CONTINUOUS EXPOSURE OF BLUEGILLS TO A NOMINAL CONCENTRATION OF 2.22 µg/1.

Day	Sample #	Exposure Concent Result	ration µg/l <u>Mean</u>
O Before fish	Ť 2	2.37 2.44	2.43
0.17	2	2.23 2.30	2.27
1	1 2	2.53 2.81	2.67
1.37	1 2	2.67 2.82	2.75
4	1 2	2.81 3.19	3.00
7*	1 2	0.33 0.33	0.32
		X = 2,62 S = 0.30	

^{*}Day 7 values were not included in calculating the mean because of manostat malfunction.

TABLE 3. MEASURED 14C-RESIDUE AS S-160 IN BLUEGILL DURING A 7-DAY PRELIMINARY CONTINUOUS EXPOSURE OF 2.22 mg/l (DAYS 1-7) AND OURING ELIMINATION (DAYS 9-21)

Day	Fish #	<u> 44/kg</u>	<u>Mean</u>
1	1 2 3	313.23 287.01 319.85	306.70
4	1 2 3	368.37 543.16 412.36	441.29
7	1 2 3	267.71 198.14 336.12	267.32
8 _{!s}	1 2 3	28.95 45.63 47.96	40.85
11	ì 2 3	9.90 14.34 11.29	11.84
] 4	1 2 3	9,83 30.42 30.95	23.73
21	7 2 -3 4 5	7.72 27.10 5.75 10.36 7.49	11.68

TABLE 3. MEASURED 14C-RESIDUE AS S-160 IN BLUEGILL DURING A 7-DAY PRELIMINARY CONTINUOUS EXPOSURE OF 2.22 µg/l (DAYS 1-7) AND DURING ELIMINATION (DAYS 9-21)

Day	<u>Fish #</u>	μg/kg	<u>Mean</u>
Ĭ	1 2 3	313.23 287.01 319.86	306,70
4	1 2 3	368.37 543.15 412,36	441.29
7	1 2 3	267.71 198.14 336.12	267.32
8	1 2 3	28,95 45,63 47,96	40.85
11	1 2 3	9.90 14.34 11.29	11.84
14	1 2 3	9.83 30.42 30.95	23.73
21	1 2 3 4 5	7.72 27.10 5.75 10.35 7.49	11.68

TABLE 4. MEASURED 14C-RESIDUES CALCULATED AS S-160 IN WATER DURING A 17-DAY (DEFINITIVE) CONTINUOUS EXPOSURE OF BLUEGILLS TO A NOMINAL CONCENTRATION OF 2.22 µg/1

•		Exposure Concen	tration ug/l
Day	Sample #	Result	Mean
O Before fish	1 2	5.81 6.87	6.34
0 After fish were added	1 2	6.06 5.80	5.93
0 Adjusted H ₂ 0 flow	Ĭ 2	6.13 5.86	6.00
0.5	2	. 5.77 5.61	5.69
٠ .	2	6,14 5,95	6.05
2	1 2	7.07 7.46	7,27
4 (0)	1 2	0.73 0.70	0.72
7 (3)	1 2	4.06 4.19	4.13
11 (7)	1 2	2.52 2.72	2.62
14 (10)	1 2	2. 59 2.59	2.59
16 (12)	1 2	2.30 2.67	2,49
18 (14)	1 2	3.17 2.90	3.04
21 (17)	1 2	2.84 2.92	2.88

 $\bar{X} = 2.96 \\ S = 0.59$

The values for the days in parentheses were used to calculate the BCF. The mean is calculated for those days only.

TABLE 6. HEASURED 14C-RESIDUES AS S-160 IN BLUEGILL OURING A 17-DAY DEFINITIVE CONTINUOUS EXPOSURE OF 2.22 bg/1 (DAYS 0.5-21) AND OURING ELIMINATION (DAYS 22-42).

_				<u> </u>		•
Day	Molet 1sh	Mean	<u>Kuscla</u>	<u>Mean</u>	Viscent	Mean
Q. 5	535.04 531.68 450.95	505.89	71.57 51.03 72.33	64,98	7519.94 5612.81 12339.23	8490.66
1	765.07 809.84 1001.54	858.82	82,53 94,47 97,78	91.59	11147.33 10309.40	10728,37
2	1193.97 1009.26 1369.89	3191.04	126.64 268.14 267.53	220.77	11026,45 11465.63	11247.04
4 (0)	40.14 35.58 109.31	61.70	14.35 10.77 27,99	17.70	272.25 131.22 314.35	239,27
7 (3)	460.36 409.24 487.87	9 5 9.16	85,43 179,33 100,22	721.66	1888.32 7148.07 7974.56	5670,37
14 (11)	503.68 661.84 633.36	601129	69.60 51.44	65.52	9262.66 5900.18 5347.07	7159.97
16 (12)	526.25 520.39 628.38	558.34	143,48 60,21 72,28	91.99	3495.81 2472.13 5993.70	3987,55
18 (14)	454.67 572.38 524.46	550.50	73.28 50.14 58.08	60.50	3139,39 3687,78 4151.91	3659.69
21 (17)	587.21 645.02 662.53	638.25	69.16 92.87 73,92	78.65	7990.98 \$890.26	6940.62
22 (18)	131.97 358.73 98.32	196.34	25.46 44.27 41.05	36.93	750.85 566.12 1318.12	675.03
23 (19)	39.86 93.90 44.62	69.46	14.92 28,43 19.82	21.06	69.97 134.52 423.11	209.20
25 (21)	46.63 30.77 84.91	54.10	25.63 31.99 15.00	24,21	54.86 66.79 32,34	54,46
28 (24)	36.98 40.98 39.52	35,82	20.75 16.05 17.99	18.26	38.06 40.31 45,07	41.16
35 (31)	27.06 13.97 48.70	29, 9 1	14.29 21.93 14.85	17,02	# 28.58 24,54	29,56
39 (35)	29.56 30.20	29.88	8.91 12.25	10.58	11.00 22.65 *	16.83
42 (38)	29.13 24.72 22.93	25,59	6.42 14.37 8.46	9.75	* 33.95	33.96

*No Sample

Values for days in parentheses were used to calculate the BCF.

TABLE 5. NEASURED LAC-RESIDUES AS \$-160 IN SLUEGILL DURING A 17-DAY DEFINITIVE CONTINUOUS EXPOSURE OF 2.22 Lg/1 (DAYS 0.5-21) AND DURING ELIMINATION (DAYS 22-42).

<u>Qay</u>	<u>Molefish</u>	Mean	Muscle	Méan	<u> Viscera</u>	Hean
a.5	635.04 531.68 450.95	505.89	71.57 51.03 72.33	64.98	7519.94 5612.81 12339.23	8490.56
1	765.07 809.24 1001.54	.858.82	82.53 94.47 97.78	91.59	11147.33 ** 10309.40	10728.37
2)193.97 1009.26 1369.89	1197,04	128.64 268.14 267.53	220.77	11028.45 11466.63	T1247.04
4 (0)	40.14 35.66 109.31	61.70	14.35 10.77 27.99	17.70	272.25 131,22 314,35	239,27
7 (3)	480.36 409.24 487.87	459,16	85.43 179.33 100.22	121.55	1888.38 7148.07 7974.66	5670.37
14 (11)	503.68 661.24 638.36	601129	69.60 61.44	65.52	9262.86 6900.18 5347.07	7169.97
16 (12)	526.25 520.39 628.38	558.34	143.48 60.21 72.28	91.99	3495.81 2472,13 5993.70	3987.53
18 (14)	454.67 572,38 624.46	55à,5a	73,28 50.14 58.08	60.50	3139.39 3687.78 4151.91	3659.69
21 (17)	587,21 645,02 692,53	638.25	69-16 92.87 73 . 92	78.65	7990.98 * 5890.26	6940.62
22 (18)	131.97 358.73 98,32	196.34	25.46 44.27 41.05	36,93	750.85 566,72 1318.12	875.03
23 (19)	39,86 93,90 44, 6 2	59.46	14.92 28.43 19.82	21.06	69.27 134.52 423.11	209.20
25 (21)	46.63 30.77 84.91	54.10	25.63 31.99 15.00	24,21	64,86 66,19 32,34	54.45
2 8 (24)	36.98 40.96 39.52	35,82	20.75 16.05 17.99	18.26	38.05 40.31 45.07	41.15
35 (31)	27.06 13.97 48.70	29,91	14.29 21.93 14.85	17.02	* 29.58 24.54	29.55
39 (35)	29.56 30,20	29.88	8.91 12.25	10.58	11.00 22.65	16.83
42 (38)	29.13 24.72 22.93	25,59	6.42 14.37 8.46	9.75	* 33.96	13.96

*No Sample

Values for days in parentheses were used to calculate the SCF.

TABLE 6. MEASURED 14C-RESIDUES CALCULATED AS 5-160 IN WATER DURING A 7-DAY (KINETIC 1) CONTINUOUS EXPOSURE OF BLUEGILLS TO A NOMINAL CONCENTRATION OF 22.2 µg/1.

Day	Sample #	Exposure Concer Result	tration ug/l Mean
O Before fish	1 2	30.0 28.4	29.2
O After fish were added	1 2	35.3 34.0	34.6
2	Ĭ 2	. 3.2 4.2	3.7
2.33	1 2	23.0 23,8	23.4
4	1 2	16.3 14.0	15.2
7	1 2	32.1 33.0	32.6
		$\bar{X} = 23.11$ $5 = 11.30$	

TABLE 7. MEASURED 14C-RESIDUES CALCULATED AS 5-160 IN BLUEGILL DURING A 7-DAY (KINETIC 1) CONTINUOUS EXPOSURE OF 22.2 µg/1 AND DURING ELIMINATION (DAYS 8-21)

Day	<u>Wholefish</u>	<u>Mean</u>
1	2043.15 1733.44 2498.25	2097.61
4	1641.37 1670.68 1785.82	1699.29
7	1627.54 3694.81 1527.28	2283.21
8	789.64 394.82 268.74	484.40
11	534.64 139.32 106.14	260.03
14	96.86 103.98 185.53	129.12
21	39.19 132.43 51.82 172.41 63.65 53.43	87.16

TABLE 7. MEASURED 14C-RESIDUES CALCULATED AS S-160 IN BLUEGILL DURING A 7-DAY (KINETIC 1) CONTINUOUS EXPOSURE OF 22.2 µg/1 AND DURING ELIMINATION (DAYS 8-21)

Day	Wholefish	<u>Mean</u>
1	2043.15 1733.44 2498.25	2091.61
4	1641.37 1670.68 1785.82	1699.29
7	1627.54 3694.81 1527.28	2283.21
8	789.64 394.82 268.74	. 484.40
11	534.64 139.32 106.14	260.03
14	96,86 103.98 186,53	129.12
ž <u>ī</u>	39.19 132.43 61.82 172.41 63.65 53.43	87.15

4

TABLE 8. MEASURED 14C-RESIDUES CALCULATED AS S-160 IN WATER DURING A 7-DAY (KINETIC 2) CONTINUOUS EXPOSURE OF BLUEGILLS TO A NOMINAL CONCENTRATION OF 222 µg/1.

Day	Sample #	Exposure Concent: Result	ration µg/} Mean
O Before fish	1 2	265 271	268
O After fish	1 2 .	278 265	272
2	1 2	26 31	. 39
2.33	1 2	172 175	174
4	1 2	246 245	246
7	1 2	267 25 6	262
		X = 208.08	

90.86

TABLE 9. MEASURED 14C-RESIDUES CALCULATED AS S-160 IN BLUEGILL TISSUES DURING A 7-DAY (XINETIC 2) CONTINUOUS EXPOSURE OF 222 µg/1 AND DURING ELIMINATION (DAYS 8-21).

Day	Wholefish	<u>Mean</u>
1	19075.41 18023.06 25353.05	20817.17
4	20843,32 20925.46 15691.61	19153.43
7 	18091.65 19428.64 17791.45	18439125
8	1840.37 4289.24 6085.12	4064.91
11	954.74 530.72 396.03	627.15
14	619.37 720.03 371.13	570.18
21	224.42 384.90 1528.99 257.16	598.87

TABLE 9. MEASURED 14C-RESIDUES CALCULATED AS 5-160 IN BLUEGILL TISSUES DURING A 7-DAY (KINETIC 2) CONTINUOUS EXPOSURE OF 222 µg/1 AND DURING ELIMINATION (DAYS 8-21).

Day	<u>Wholefish</u>	<u>Mean</u>
1	19075.41 18023.06 25353.05	20817,17
4	20843.32 20925.45 15691.61	19153.43
7	18091.65 19428.64 17791.45	18439.25
8	1840.37 4289.24 6065,12	4064.91
1F	954.74 530.72 396.03	627.16
14	619.37 720.03 371.13	570.18
21	224.42 384.90 1528.99 257.16	598.87

TABLE 10. CONCENTRATIONS OF S-160 DETERMINED FOR THE EXPOSURE WATER OF THREE BLUEGILL BIOCONCENTRATION STUDIES ON DAY 7. ANALYSES WERE PERFORMED BY GAS CHROMATOGRAPHY AND BETA SPECTROSCOPY.

	Exposure Concentr	ation_µg/l	
Nominal	Study	Measured	<u>Radioanalysis</u>
2.22	17-Day Definitive	2.29 1.75	4.06 4.19
22.2	7-Day Kinetic 1	14.9 14.9	32.1 33.0
222	7-Day Kinetic 2	85,4 92.7	267 256

SISO BIOACCUMULATION DEF. W.

Each X represents the observed value The line is the calculated best fit line for the data

3'80 SIDACCUMULATION DEF. W. F.

Each X represents the observed value The line is the calculated best fit line for the data

4

FIGURE 2. BIOFAC COMPUTER PROGRAM GRAPH OF 17-DAY DEFINITIVE MUSCLE BIOCONCENTRATION STUDY

\$160 BIOACCUMULATION DEF. MUS.

Each X represents the observed value The line is the calculated best fit line for the data

FIGURE 3. BIOFAC COMPUTER PROGRAM GRAPH OF 17-DAY DEFINITIVE VISCERA BIOCONCENTRATION STUDY

ELAPSED TIME (DAYS)

FIGURE 4. BIOFAC COMPUTER PROGRAM GRAPH OF 7-DAY PRELIMINARY WHOLEFISH BIOCONCENTRATION STUDY.

S180 BIOACCUMULATION PRELIMINARY

FIGURE 5. BIOFAC COMPUTER PROGRAM GRAPH OF 7-DAY KINETIC 1 WHOLEFISH BIOCONCENTRATION STUDY.

FIGURE 5. BIOFAC COMPUTER PROGRAM GRAPH OF 7-DAY KINETIC 1 WHOLEFISH BIOCONCENTRATION STUDY.

3

SIEGO BIOACCUMULATION KINETIC 2

ELAPSED TIME (DAYS)

•					۸.	~	\sim	٠. '	~	MEATURINE T.			~	~				-	0 3	- Process
	7 8 8 8 1		<u> </u>	1		<u>7 Y X</u>	<u> </u>	<u> </u>	¥4.¥	7-7-2	<u> </u>	₹ 9 =	#** * *			2	<u> </u>		ر ي ع ر	
				11/2	2	44. 11.1	اس شا	ماندالما	الحروما ال	~ ~ ~	Naz	N (0 A	~		د د خد		. [095 085	(
		1			- 5	NSO 4K	825	Vi Fu	~ = =	4900 −	(* (#)	300 00 00 00 00 00 00 00 00 00 00 00 00 	0-06	~~~ ∨ (₽₩		∞⊸⇔	ST PO	60 5 (0)5 5 (2)5 1	688
:		İ		8	35	E T				Carlot Service		A		3.4		74			E TOA	1
	355	. }	7. A.	i S	27	CHANGEOVÉR Vater Con	3 2 2	0.3	WW	22.2	2			2		1		0.5 0.3	442#G	
		ı	1333380 		7	18.31. 13.51	800	500	200	200	100	00000 00000 00000 00000	80000	700	400	000 200 200	900	000	5000 5000	388
	7.			\$ 4	7	200	80000E		1000000	885	60	3000	80000E+0 80000E+0	70000E+0 70000E+0	0+300004 0+300000 0+300002	20000E+ 20000E+	0+30000E+0	0000E	300 E	
			3.3		- II	m . (1	380000E+02 380000E+02	50000E+02 50000E+02	20+30000012	40000E+02	00006+02	190000E+02% 190000E+02% 190000E+02%	E+02	20000E+02 70000E+02 70000E+02	200000E+02 400000E+02	090000#+02 20000E+02 20000E+02	00000E+02 00000E+02 00000E+02	00000E+01 00000E+01 00000E+01	1	Marco
		ļ			53	# B	N 102		10 0 N		10° 10° 1		N 10 1		NAME					
.					85	FRE			.					0.00	400	200	000	, 000	- ·	
					1ES 0000+02	TOT T		2	1 // .	4.4		10 7 4		D 150	U. A.D.	v. v.o			4 S	Diz.V
		Ì			2	- 7	293	956 974	70600		66300£	00065	\$197 \$873	572	46	\$8360 E+0 26256 E+0 26390 E+0	6878708+0 6036808+0 6618408+0	09370E+0 80360E+0 09260E+0	1, () () E E E E E E E E E E E E E E E E	
		ì			1	OR I	000	200	000	30096 30096 30096	5300£+0		30E	200	4670E+0 2380E+0	10 to 0	408	20 CO CO	5000	
į		· }		* 1		1	201300E+02 247200E+02 229300E+02	407400E*029 295600E*D29 302000E*028	222	2.22	202	98600E+02 98600E+02 98600E+02	825508+03 31970E+03 58730E+03	0 m + 0	4806+03 570E+03 380E+03	000	76706+03 36806+03 18406+03	9 m + 0	1 1 2 2 E	
. !		1	7	23.8		5	222			4						32.50		333	2,2 2,4 2,8 -	Rec.
	3.14.2 5.12.34				8			1100	1						•	2.22		300	Exp.	
		- 1		\$ 5	0700000D-0	संक्रिक् इ.स.च्या					Į	50]		i		_		-	200
		1	202	\$. 5	7	~865€ • 1865€					ĺ		1	2.0					Form	Page 2
					-^		1		1		ĺ	32.3	1	30.2			!	20		GMZ.
			200				1		}	A ACCUM			1] ;			
						77			1	3.00 St.				100				300	1	'" ;
									1			339 873		4.0					1	
									1	# (A)			1	133					ł	
		•									1								ł	
								9.00					į.				}			
							.		1]		•			2.2			36.7	
		<i>,</i> "			ĺ							10	3	4			i	(A) (2)	S-79-55- age 25]:
					Ì	7 P. H.			1		Ì	200	1		Ì	300			5-	300
													1					130000		
				7000									4			3		4		I BEACE.
		·		. 3000		海滨湖 在中华	1			藏實			1							T. C.
							1			100	•			3	Į		1	43.4	(v)	
				200			1		}	65.ACM			3				•		\$	
			3.4			3770							į.				i		Sume	
•		-					1		1	1444						***	1	4	خ	1 }
		:							1		1	210 (101)				70 O	1		\ \frac{1}{2}	
	鐵到						8						1						addition	1
				7% (\$1) 1982(199)				200					ğ	50	ł	1.00		****	į ą.	ا المحال
	100 A										1						9	3769	O.IV.	
						22			i i		1		ž.	100					8]
	32.45		1				1					學透					4	Y No.	٦	
				0.000		200 H)		i		1		8		1			100	57	
											1								=	}
-						300				200		1230		3 X		SAR		\$ 2 \$	}	
	2403				') + 2 y = 3]			Specific Spe	}		1					\$. 3.		
			(A)]		1	4,4%,	}	377	1	6 444		3.3]	\$. 7 . 4 . 5 . 5 . 5		}
	14.0			27.5			1) (Fye	1		1	7	1	1] }			3.5 ·	1	
	T WAS		\$00.7]			3.	1	2.0	4	2.7%			À			
-				1			*	$I_{j,j}^{ab}$	1	123	1			1000]		3	7.54 7.54]	1
	[答題		18.5				1	100			1		1		:				1	
		٠.					4		4	27	1	7.	•	3				\$\$Z\$		1
L) 'i		1 1	1	1	l (1	1	ļ.	1	ı	[Д	Щ	⊥	1—	<u></u>		4	' '

on		p. Foru	Page 25	Sume additions	1115-00-
0.590006+00 0.3900008+01 0.3900008+01 0.3000008+01	0.109314E+63 0.409246E+03 0.409246E+03 0.43767E+1103 0.50341403				
	236				
0.14000E+02 0.140000E+02 0.170000E+02 0.170000E+02 0.170000E+02	14 (A)				
	0.307200E+02 0.859700E+02 0.369800E+02 0.60960E+02 0.276600E+02				
.310000E+02 .310000E+04 .350000E+02; .350000E+02; .380000E+02; .380000E+02	0,139700 0,295600 0,295600 0,297500 0,247200				
HANGEOVER HATER CON TRITIAL GOD+01		CE 2,90000 (V)			
Noteroscadacity y U	ptake Kj Clear	ince Ra			

[_		·					-		~		$\overline{}$	$\overline{}$		-	· - .	٠ .	· ~ .	~~~	
		Ŷ	, ,	25.75	1	1.54	. 7 : 3	· · · ·	1111	7 3 3 3	7		23.5	Z L 3 S S	1 1 6 2 3	7777	# # # # # # # # # # # # # # # # # # #	17851	27.5
		1.40	1		3			3,45		1 2 2 2	4	1	4	} · .}·					
		2.5	1			30		2.5-	4	No.		1. 2		1.00] :-		1.00		2.40
1		100	1	1,30			4		ŝ	(A) (25)	ļ	100	-				598	1	44
12000			1		3				è	1680		1.45	.]	1 " } "		<u> </u>	TOWNY Y	1. 1	
		5.3		13	<u> </u>					18.5				1 3 7 7		- 82			
				- 2	(F)		3			\$97.975 37.277	}	100	1				7 (20)		
X-1000			i		É	72.3	4 1					200		100		35			
			l	100	<u>.</u>		1	1992/2010 1988/10	1	30.0		233	1	*			2.00	1	g volumes graphs
3.4			1		Š		8	7 () () () () () () () () () (1		1			78.7		32	(0.777) (0.777) (0.778)		3
TO AND		124							¥		1	1. A. A.	1						
				30	ž		ş				į.		1	234	Į ģ	22	2 6 2 6 1 3 7 7		200
7		35.35						200	1		1	28,							
,1141				0.00	: :		și .	12,723	1	3.28		243				333	70	1	
	Ξ	37.7		3.3				jerken				75.75		1200		7637 7637			######################################
0) 4	43	115.49		200		12.7	£.,												
TANK	3	75.0]		4	200						\$ 100 h					***		2.27
	3			3.20			[78 2 78 2			1								
-	9				}	1	Š			ES PN	3		Į	1			1		100
ZALIKA MA	<u>.</u>	2.2	ļ				8			07.3			1		8				
				13.3%	2		,		-				į	-12					36 .25
		in Mary	,			200	ē d	90.49		. 80			} .						
275023	6				5	N. W.	1			77	}	200					130		1
·warening	٤			30 222 3-352	4		3	L			;	19572: 100460				7/87			an an an Tagairtí
	ŀ				ž	effekter effekter	9	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			20.00		7% 3					
<u>=</u>		18 Mg			1	46	}	100		(2) (2)				175			123	1	
<u></u>				71.00				San.			1	1	Ī	X.P	l lá			1	73.75
			J. 14	7.00 A	\{ 	12.55		34.4			1	78.46 (2000)	,	3.54			14 TEX	, [1
2. S		2		2.5		22	4			7.7	ļ				3	74			
الدسود		. HE			1	2	i		1			(40)		J			7.7		N.S
		E.T.		13.5	1	4	1	5				1/2	}	4,		2	30%		
++2-4		39		1000	1		1	14.25]	100			ļ	N. 17.	1 1 2	়ে ই	5 24 5	8 8	
7755	ŀ	· •			·	- 4		(A)	İ				i		30		A 주문학	262	5 (1 to 1/2) 5 (5 (1))
Pic 0		CONCENTRATIO ED					_								0	TAMBLED DEV	90.0	0.0	
1]	2			-		1		ĺ	100]	12.	ŀ					'	
200		<u>.</u>			j	X// Y	1	15 C 89		300	İ	9.00		1	a		1 1/2/2011	, J.	
	Ī	5				6.30		2.5.5	Į	3/6	1				12 .3			.	
!		길믑	00				, , ,		I							STANDARD DEV	는 건 포	56	30
7.77 .12	2.	4.4	93	500	200	73.5	E 20	250	200	59.5	2 2 2	386	20.25	100		<u>. ا ۵</u>	P 2 2 3	3,01301	
	~	- 불립	176.3930 176.3930	116-393U 499-3334 499-3334	459,3334 555,1649 555,1649	N. W.	555,4189 555,4189 555,4189	444	256.663 258.663 258.6635	120.6594 120.6594 120.4594	26.1247 26.1247 26.1247	246386 246386 216386	0.0125 0.0125 0.0125	0.0000	0.0001 0.0001 13.22338708	5 2	M = 6 d	3,013	- ' - [
	1	FOR CHEMICAL C CALCULATED	1	499.3334	555-1649 555-1649 555-1649	555.1736 555.3736	48.8	555.4302 555.4302	0 W U		22.2				· 17	-759,831055 AND LINEARIZED	143.40171 0.76422 0.99681		2 *** 4
34.50	#	~			}	1.4	1	1							ê	<u>.</u> ₹	1.50	불	
280		₽		10.72	1					*		15.51			55.5	٠ ا		ž.	
	=	\$								17/2	1			i (* 1841	0 0 SDUMES 34.21976		1 1	7	
1	ES	길	불음	: '	F & 1	F 2 2	520	587.2100 645.0200		222	보도 후:		999	2224	200 300 F SUUXIES - 836 21076+62	, S	125 8	OF SS PARAHETERGANKA	
	¥	CYED VAL ODSERVED	40-1400 35-6600	109,3100 480,3601 409,2600	487,8707 503,6799 601,8461	526.2500 526.2500 520.3899	854,4699 854,4699 572,3799	527,2100 587,2100 645,0200	554,7300 358,7300	96.5209 39.8600 93.9000	4 6.6 500 30.7700	16.9800 16.9800	0920"52 13.9700 13.9700	27 5600 27 5600 30 2000	24.7200 22.0300 UM DF S	ESTRUALS	££13	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	94
. 5	위	YEC DSE	9 %	66.	<u> </u>	9.00	2 - 0	200	N - 0	200	.00		, r			1 1	N Y	R. S. S.	
77 8	ᇑ	Ä		F 3 3	42.2		9 4 W	6.00	e5.₩,	96.5200 39.8600 93.9000			√ ~	·	~~ ™ _≈		55.57	882	
22	6	PREDICTED VALUES ODSERVED		1				1.00				,,,-	:	1. 15. 2	i ĉ		₩ <u>25</u> 25	128	
. <u> </u>	뵱	e		1 40	1							: 7,				9 5	20 4 4 5	<u> </u>	
W(2)	*	*		" ;	1	10.7				. 5		7.4			KESTOURE DEVLATION	SUH ARA	F 2 - F	2 2	
TOSUR POR TER THE CHIEF ON THE STATE OF THE CHIEF	TINE OF CHANGEOVER TO FRESH WATER-	OBSERVED AND TIME	0.50	900 E	10.00 10.00 10.00	200	200	17.00 17.00		000	888	202					STAKE KATE CONSTANT K2 CLEARANCE RATE CONSTANT K2 TOTAL ON CLEARANCE	TINE TO REACH 90%	
380	9	TIME	□ €		10.00 10.00	12.08	16.06 16.06	17.00 17.00	18.00 18.00 18.00	19-00 19-00 19-00	21.06 21.06 21.08	00*72.	31.00	35.00	38+00 38+00 38+00 4614HTED 1	DE TGHTED	250	2 20	
7.7	Ξļ	188 188		1121	ļ [*]	1000	Ĭ	e e				•		13 X 1	45	9 1	137		
**************************************	-:	Φ		l :	1		F	-				<u> </u>		177	# F	当! 告	#42	(변박)	- 1

REFERENCES

Adams, W.J., Renaudette, W.J. and Gledhill, W.E., 1978. Acute Toxicity of Santicizer 5-160 to Fathead Minnows in a Flow-Through System. Environmental Sciences Special Study E5-78-SS-21.

Glau, G.E. and Agin, G.L., 1978. A User's Manual for Biofac: A Computer Program for Characterizing the Rates of Uptake and Clearance of Chemicals in Aquatic Organisms: Central Research/Physical Research/Math Applications. The Dow Chemical Company, Midland, Michigan 48640.

Barrows, M.A., Petrocelli, S.R., Macek, K.J., Carroll, J.T., 1979. In "Dynamics Exposure, and Hazard Assessment of Toxic Chemical in the Environment," Haque, R. Ed. Symposium proceedings, in press.

Hamelink, J.L., and Eaton, J.G., 1979. Proposed Standard Practice for Conducting Bioconcentration Tests with Fishes and Saltwater Bivalve Molluscs, ASTM Draft No. 9.

Ricks, O., Dixon, J.A. & Kaley, R.G., 1978. Occurrence and Distribution of Phthalate Esters in Aquatic Ecosystems. Environmental Sciences Special Study ES-78-SS-8.

Hines, D.B., and Kaelble, E.F., 1979. Synthesis, Preparative Purification and Analytical Characterization of Santicizer® 160 ¹⁴C. Applied Sciences, Inorganic Analysis Special Study R-79-SS-10.

REFERENCES

Adams, W.J., Renaudette, W.J. and Gledhill, W.E., 1978. Acute Toxicity of Santicizer S-160 to Fathead Minnows in a Flow-Through System. Environmental Sciences Special Study ES-78-SS-21.

Glau, G.E. and Agin, G.L., 1978. <u>A User's Manual for Biofac: A Computer Program for Characterizing the Rates of Uptake and Clearance of Chemicals in Aquatic Organisms</u>: Central Research/Physical Research/Math Applications. The Dow Chemical Company, Midland, Michigan 48640.

Barrows, M.A., Petrocelli, S.R., Macek, K.J., Carroll, J.T., 1979. In "Dynamics Exposure, and Hazard Assessment of Toxic Chemical in the Environment," Haque, R. Ed. Symposium proceedings, in press.

Hamelink, J.L., and Eaton, J.G., 1979. Proposed Standard Practice for Conducting Bioconcentration Tests with Fishes and Saltwater Bivalve Molluscs, ASTM Draft No. 9.

Hicks, O., Dixon, J.A. & Kaley, R.G., 1978. Occurrence and Distribution of Phthalate Esters in Aquatic Ecosystems. Environmental Sciences Special Study ES-78-5S-8.

Hines, D.B., and Kaelble, E.F., 1979. Synthesis, Preparative Purification and Analytical Characterization of Santicizers 760 ¹⁴C. Applied Sciences, Inorganic Analysis Special Study R-79-SS-10.

Submitted by:

Monsanto Industrial Chemicals Company Environmental Sciences Section Aquatic Toxicology Laboratory - NIB 800 N. Lindbergh Blvd. St. Louis, Missouri 63166

Prepared by:

Barbara B. Heidolph Research Biologist

Approved by:

WilYiam E. Gledhill

Research Group Leader Environmental Assessment Group