Т	oxicology Inforn The Dov	nation Collection v Chemical Com			
Title					
Repeated Exposure of Ra	ts and Dogs to Vapors	of Eight Chlorinated	Hydrocarbones		
Author(s)					
C.P. Carpenter					
R eviewer(s)					
J. E. Battjes					
Patent Status	Date Issued	Page Count	Lab Report Code		
No Action Required	13 January 1947	51	HET K-001717-007		
Geographic Location	Department	Archive Number	CRI Number		
N. America	TERC				

Abstract

Exposure of rats and dogs to vapors of eight chlorinated hydrocarbons on alternate days for 7 hours per day over a period of 6 months (75 exposure days) have been completed.

Endemic lung infection of the rat colony minimizes the value of the results produced by this study. All dogs survived the exposures but the single animal exposed to each vapor makes it unwise to base any definite conclusions on their response. This study therefore cannot be recommended for publication.

Briefly, it was found, subject to the above qualifications, that 1000 ppm. tetrachloroethylene produced more untoward effects than did 2000 ppm. Trichloroethylene or 1000 ppm, ethylidene dichloride, the latter being least harmful. Of the compounds studied at lower concentrations, comparison of 100 ppm, trichloroethane with 200 ppm. tetrachloroethane, leads us to believe that trichloroethane is fully as toxic or more so than tetrachloroethane. Ethylene dichloride at 200 ppm. is similar in severity to tetrachloroethane with 200 ppm. propylene dichloride somewhat less toxic. The comparative toxicity of carbon tetrachloride has not been elucidated by the exposure to 400 ppm, which produced evident damage.

P.

Confidential

Report 10-13

R: 1-13-47 1+6121/47

MELLON INSTITUTE OF INDUSTRIAL RESEARCH

UNIVERSITY OF PITTSBURGH

SPECIAL REPORT

Number	copies	made	
			2 by MC7
Date o	f maili	ng <u>l</u>	31-47 CRANCH STANLEY
Addres	sed to_	L	STANLEY

, `**`**~

on Address Repeated Exposure of Rats and Dogs to Vapors of

Eight Chlorinated Hydrocarbons

Ethylidene Dichloride - 10-22? Carbon Tetrachloride Trichloroethylene Tetrachloroethylene Ethylene Dichloride -Trichloroethane Tetrachloroethane Propylene Dichloride

Tables of Protoco's Attached

Carbide and Carbon Chemicals Corporation

Industrial Fellowship No. 274-10

Table of Contents

7

.

ì

Page
Summaryl
Introduction
Samples
Vapor Concentrations
Rats
Dogs
Vapor Exposures
Growth
Mortality
Body length
Liver and Kidney Weight
Icterus Index
Liver Fat
Functional Tests on Dogs
Blood Cytology
Pathology
Discussion
Literature

Report 10-13 Page 1.

Summary

Exposure of rats and dogs to vapors of eight chlorinated hydrocarbons on alternate days for 7 hours per day over a period of 6 months (75 exposure days) have been completed.

Endemic lung infection of the rat colony minimizes the value of the results produced by this study. All dogs survived the exposures but the single animal exposed to each vapor makes it unwise to base any definite conclusions on their response. This study therefore cannot be recommended for publication.

Briefly, it was found, subject to the above qualifications, that 1000 ppm. tetrachloroethylene produced more untoward effects than did 2000 ppm. trichloroethylene or 1000 ppm, ethylidene dichloride, the latter being least harmful. Of the compounds studied at lower concentrations, comparison of 100 ppm. trichloroethane with 200 ppm. tetrachloroethane, leads us to believe that trichloroethane is fully as toxic or more so than tetrachloroethane. Ethylene dichloride at 200 ppm. is similar in severity to tetrachloroethane with 200 ppm. propylene dichloride somewhat less toxic. The comparative toxicity of carbon tetrachloride has not been elucidated by the exposure to 400 ppm, which produced evident damage.

Introduction

In March of 1939 exposures were started in an attempt to compare the chronic toxicity of ethylene dichloride and trichloroethylene. Groups of rats were exposed 8 hours a day to 200 ppm. of each chlorinated solvent and to a mixture containing 65% ethylene dichloride and 35% trichloroethylene. It was anticipated that the exposures would continue for several months, but 1/5 of the rats exposed to ethylene dichloride died after the first 8-hour exposure. No animals died as a result of the other two exposures in a 10-day period. The exposed rats died from an acute lung irritation such as might be expected from phosgene. Repeated careful quantitative chemical tests revealed no detectable phosgene, free chlorine or hydrochloric acid vapors in the vapor-air mixtures. The tests used were sensitive to small fractions of a part per million of the suspected materials and in view of their absence it seems impossible that the deaths could have been caused by anything save ethylene dichloride. 1t was concluded that rats are particularly susceptible to lung irritation from ethylene dichloride, which is a type of injury not produced by low concentrations of this material in humans.

Late in 1943 upon the request of the Sales Department the vapor hazard of trichloroethane was investigated. Contrary to the accepted fact that the more highly chlorinated compounds evince the greatest toxicity, it was found that trichloroethane at 170 ppm. killed 7/12 of the rats exposed 7 hrs. per day, 5 days a week for 30 exposure days whereas only 3/12 of the group exposed to 375 ppm. tetrachloroethane died.

Report 10-13 Page 2.

The results of both the ethylene dichloride and trichloroethane exposures were not considered conclusive and a new approach was therefore decided upon. In passing, attention might be **ca**lled to the fact that this work was undertaken before the interest of the National Institute of Health in chronic exposures of animals to ethylene dichloride came to our attention.

The high mortalities encountered in the daily exposure of small animals to ethylene dichloride at low concentrations led us to the use of alternate daily exposures. It was anticipated that the insult to the lung would be sufficiently alleviated so that rats would survive sufficiently long for liver and kidney damage to appear. To determine whether biochemical tests would be a useful tool in detecting early signs of liver damage and to gain some idea of the response of larger animals, one dog was assigned to exposure in each vapor. Facilities available limited to one the number used. It was hoped that by intensive and careful study of the dogs, pertinent information would be gained on blood effects as well as on liver and kidney metabolism.

It was also decided that, insofar as our physical facilities allowed, as many chlorinated hydrocarbons as possible would be compared by alternate exposure for a six month period. The concentration selected was to be the highest which, in our judgment, could be tolerated by a majority of the animals exposed. The chlorinated hydrocarbons selected for study included ethylidene chloride (1,1-dichloroethane), carbon tetrachloride (tetrachloromethane), trichloroethylene (ethylene trichloride), tetrachloroethylene (perchloroethylene or ethylene tetrachloride), ethylene dichloride (1,2-dichloroethane), trichloroethane (Beta or 1,1,2-trichloroethane), tetrachloroethane (1,1,2,2-tetrachloroethane or acetylene tetrachloride), and propylene dichloride (1,2-dichloropropane or propylene chloride).

Samples

The compounds used in this study represented the usual commercial grades. Ethylene dichloride, trichloroethane and propylene dichloride were Carbide and Carbon Chemicals Company products. Carbon tetrachloride and trichloroethylene were procured from Westvaco Chlorine Products Corporation. Ethylidene dichloride, tetrachlorethane, and tetrachloroethylene were supplied by the Dow Chemical Company.

Vapor Concentrations

Preliminary range finding exposures were made to determine the highest concentration which would be tolerated for an 8 hour exposure. When this was established alternate daily exposures were made for a two week period. If the rats survived it was assumed that this concentration would be satisfactory. Guided by the above procedure and several arbitrary decisions to arrive at more uniformity for comparison the following concentrations were selected:

Report 10-13 Page 3.

Ethylidene dichloride	1 00 0	ppm.
Carbon tetrachloride	40 0	P1
Trichloroethylene	2 00 0	11
Tetrachloroethylene	1 00 0	11
Ethyl ene dichloride	20 0	11
Trichloroethane	100	п
Tetrachloroethane	200	11
Propylene dichloride	20 0	**

<u>Rats</u>

Two-hundred fifty albino rats of mixed sex were procured from Sprague-Dawley of Madison, Wisconsin. These rats were born between November first and tenth 1945 and were one month of age when received. After a preliminary observation period of two weeks 216 seemingly healthy animals were selected and distributed by randomization into 9 groups of 24 each. The 12 males and 12 females were kept in separate cages 6 rats per cage. Fertility was not studied because of the relatively short period of exposure. A group was assigned to each of the 8 compounds and the ninth held as an exposed control. The latter group was subjected to conditions approximating those found in the exposed groups without the addition of any vapor to the air furnished. The colony was maintained on Purina Laboratory Chow with supplements of orange and carrot. Exposure was made in the home cages to avoid repeated daily handling. Water bottles were removed from the cages while exposures were in progress. The water bottle delivery tips were sterilized daily and cages thoroughly scrubbed every two weeks. Infected animals were sacrificed as soon as the condition became apparent. Despite these precautions the incidence of lung infection was unduly high which predisposed to early death from vapor inhalation. It is possible that rats shipped long distances in cold weather may contract respiratory infections en route, that are of a chronic type, which may later fulminate when they are subjected to an additional respiratory insult.

Previous to the first exposure, blood cell counts and hemoglobin determinations were made, with repititions after the first, third, and sixth month of exposure. Weight was followed each week. Autopsies were made on all animals and portions of adrenal, kidney, liver, lung, spleen, and testis were taken for histopathological study. In addition nervous tissue was taken from all of the original rats that survived 75 exposures and the replacement group which survived 45 exposures. The nervous tissue was not studied, but if there is reason to investigate neuropathology the material will be available. Body weight, body length, and kidney and liver weight were determined immediately before sacrifice of survivors.

Dogs

Fourteen mongrel male dogs were procured from a dealer 3 months prior to exposure. In this interval they were dewormed, immunized against distemper and freed of external body parasites. They were maintained on Carnation Company Frisky meal and checkers with supplements of meat and bones. Previous to exposure urea nitrogen, brom sulfalein and serum phosphatase levels

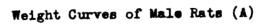
Report 10-13 Page 4.

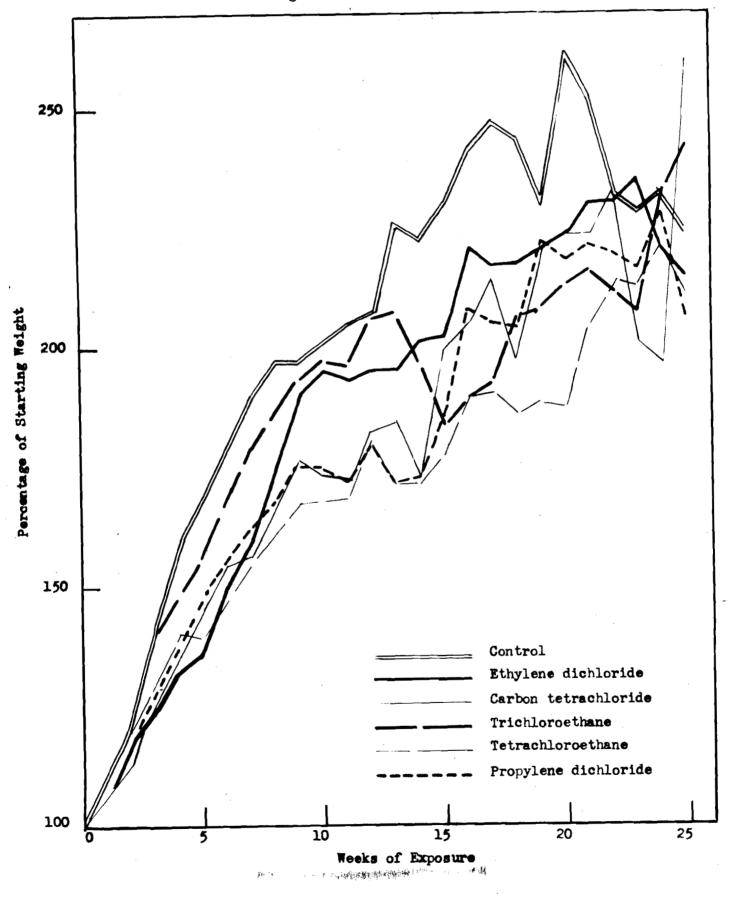
were established by duplicate determinations one month apart. After their exposures had started the publication by McCord <u>et al</u>. (1) on the thymolbarbital turbidity test was brought to our attention and was incorporated in the list of functional tests. The above tests were performed each month during the entire exposure period save in the last month when they were repeated 3 times at weekly intervals. Hematological studies were made monthly, weight was followed weekly, and organ and nervous tissue removed at sacrifice as described above for rats.

Vapor Exposure

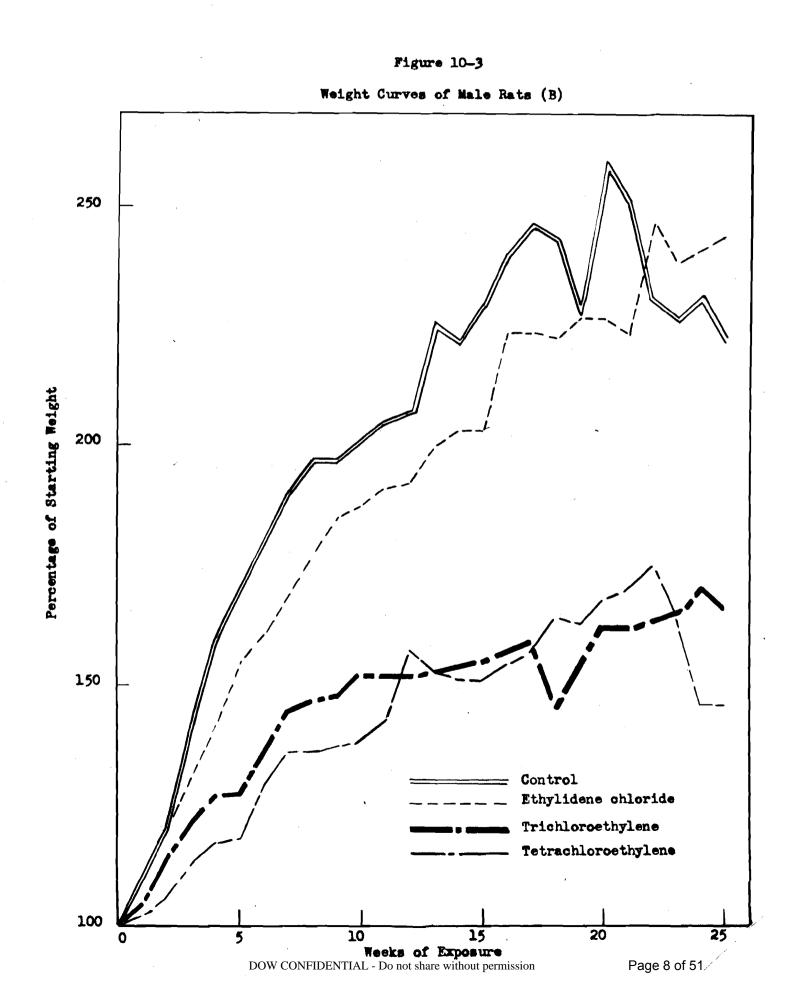
The vapor concentrations were prepared by displacement of the fluids into heated evaporators through which dilution air entered the chambers. Total air flow was maintained at a rate which provided comfortable conditions for the animals. Rats and dogs were exposed together in the four chambers of 547 liter capacity. In the 196 liter capacity chambers the rats were exposed on one day and the dogs the next. The concentrations above 200 ppm. were prepared in the large chambers and the remainder in the small chambers, but airflow was controlled so that all chambers had an equivalent rate of air change.

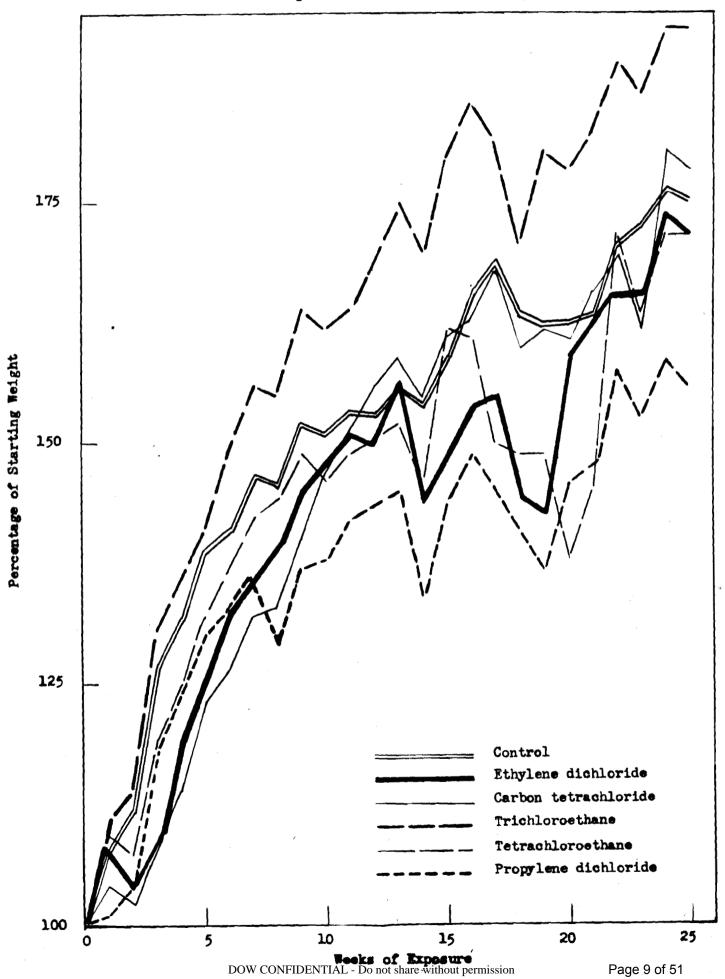
Vapor concentrations were checked each day by means of the Zeiss interferometer with frequent verification by the thermal decomposition method. The interferometer calibration based on the analysis of vapor-air mixtures by thermal decomposition furnish the following sensitivity values for this instrument in ppm. per scale division: Ethylidene dichloride 24.5, carbon tetrachloride 20.4, trichloroethylene 18.8, tetrachloroethylene 16.3, ethylene dichloride 25.0, tetrachloroethane 16.5, trichloroethane 13.3, and propylene dichloride 19.1.


The mean daily interferometer readings for the entire period of exposure were as follows:


Ethylidene dichloride	1067	ppm.
Carbon tetrachloride	415	- īi
Trichloroethylene	2088	Ħ
Tetrachloroethylene	1136	11
Ethylene dichloride	243	11
Trichloroethane	84	11
Tetrachloroethane	167	11
Propylene dichloride	160	11

Growth


Figures 10-1 to 10-5 portray the weight curves plotted as percent of original weight for the exposed dogs, and the rats separately by sex. Table 10-13 ranks the compounds in order of the increased retardation of weight gain. The "chi" square test was used for the rats because the data is amenable to calculation of frequency distribution. The use of only one dog on each compound made necessary the use of the "t" test for determining the statistical significance of their weight curves as they could not be considered in formulae dependant upon frequency distribution.


DOW CONFIDENTIAL - Do not share without permission

K-001717-007

Figure 10-4

Weight Curves of Female Rats (A)

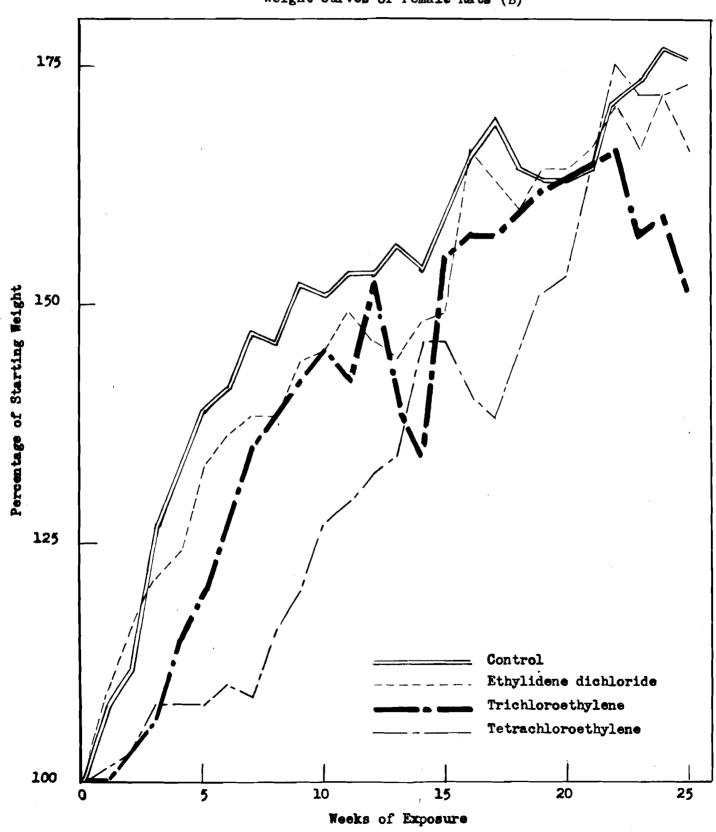


Figure 10-5

Weight Curves of Female Rats (B)

Report 10-13 Page 5.

Table 10-13

Statistical Analyses of Weight Curves

and Order of Increasing Retardation of Weight

	 D		Ī	Male Rats "Chi"	· · · · · · · · · · · · · · · · · · ·	Fe	emale Rat "Chi"	<u>s</u>
	<u>Do</u> Rank	<u>gs</u> <u>"t"</u>	Rank	Square	<u>P</u>	<u>Rank</u>	Square	<u> </u>
Propylene dichloride	1	2.0	3	15.40	0.31	7	28.27	0.0001*
Ethylidene dichloride	e 2	4•5*	2	9.74	0.70	5	17.56	0.004*
Trichloroethane	3	8.1*	1	7.59	0.66	1	21.44	(0.003*)
Ethylene dichloride	4	9.7*	4	17.33	0.24	4	14.83	0.01*
Carbon tetrachloride	5	11.4*	5	24.01	0.013*	2	9.79	0.2
Tetrachloroethylene	6	12.3*	8	72.54	<0.0001*	8	57.64	<0.0001*
Tetrachloroethane	7	13.2*	6	42.73	<0.0001*	3	10.19	0.07
Trichloroethylene	8	18.6*	7	52.23	<0.0001*	6	26.42	0.0002*

(*) = This group of female rats was stimulated and exceeded control group in weight gain.

* = Significant deviation from control group in weight loss.

Report 10-13 Page 6.

It will be noted that all of the dogs showed significant deviation from the control in weight gain with the exception of the animal exposed to propylene dichloride. This dog had no functional testes and showed the typical eunuchoid tendency toward obesity. This abnormality may or may not have influenced his weight curve.

Furthermore, there is good agreement in the response of the dogs and male rats to the vapors of the last four compounds listed in Table 10-13. The "t" values for the dogs and "Chi" square values for the male rats are uniformly high for these four compounds and the probabilities are all significant. The female rats show a much more erratic response, with those exposed to trichloroethane stimulated so that they exceeded the controls in weight gains. Their response paralleled that of the males with trichloroethylene and tetrachloroethylene but in all other instances, with the exception of trichloroethane, they deviated from the pattern set by the males.

Mortality

The numerous early deaths in all groups made necessary the addition of replacement rats after the 30th exposure. They were largely of the same age and strain as the original rats and are included in the weight curves as if they had started with the original group. They attained a maximum of 45 exposure days and were sacrificed with the original survivors. Table 10-14 shows mortality and the number of uninfected rats that were sacrificed at the termination of the study. Those sacrificed after 45 days constituted the survivors from the replacement group.

There were no deaths among the dogs exposed.

Table 10-14

Mortality

	No.	%.	Sacrificed	l after exposure for
	Exposed	Mortality	45 days	75 days
Tetrachloroethane	29	41	4	7
Ethylidene dichloride	35	51	9	5
Propylene dichloride	27	55	2	7
Controls	30	57	5	6
Trichloroethane	29	62	1	10
Ethylene dichloride	38	66	2	9
Trichloroethylene	29	69	1	9
Tetrachloroethylene	38	69	7	3
Carbon tetrachloride	30	77	-	5

Report 10-13 Page 7.

Body Length

The mean body length of the rats that survived exposure to tetrachloroethylene was significantly reduced as was also the fatness index which expresses grams per millimeter of body length. None of the other vapors produced significant effects in these respects.

Liver and Kidney Weight

Liver weight as percent of control corrected for body length is determined by dividing the liver weight of the rat under test or aerving as a control, by the liver weight of rats of the same body length listed separately by sex in tables prepared by Ponaldson (2). A proportion is then set up as follows to provide a value for x

 $\frac{\text{Mean Control Value}}{100} = \frac{\text{Mean Test Value}}{x}$

where x = Liver Weight as of control value corrected for body length.

Treatment of the data by the above method for liver and kidney weights showed that 400 ppm. carbon tetrachloride had caused a statistically significant increase in liver weight of survivors which was not evident in any other group. An increase was also noted in kidney weight after carbon tetrachloride exposure as well as in the 200 ppm. ethylene dichloride and 200 ppm. tetrachloroethane exposure groups.

Icterus Index

Icterus index determinations on individual blood samples, removed before sacrifice of survivors, revealed no difference from the controls. The acetone precipitation method and comparison with La Motte standards were both used.

Liver Fat

Liver fat analyses on pooled rat livers from each group indicated no excessive fatty infiltration but are not considered reliable except as they apply to rats that attained 45 exposures. This qualification is necessary because the livers of those rats receiving 45 and 75 exposures were inadvertently pooled, which fact would tend to reduce the values for those that had survived 75 exposures.

Functional Tests on Dogs

The generally accepted limits of normal liver function tests on dogs are as follows: Retention above 5% in brom sulfalein excretion, and 10 units per 100 ml. for serum phosphatase. Blood urea nitrogen values which reflect

Report 10-13 Page 9.

that the urea nitrogen values doubled. This occurred among controls as well as exposed animals and is therefore considered as unrelated to exposure.

Blood Cytology

The previous work with rats exposed to tetrachloroethane failed to demonstrate an increase in mononuclear cells such as has been reported by Minot and Smith (4). In the hope that dogs would show a response similar to that of humans, monthly blood counts and differential leucocyte counts were made on all of the dogs, with special attention to the two exposed to trichloroethane and tetrachloroethane. The results were negative in that no increase in monocyte count was demonstrated. The concentration of 200 ppm. tetrachloroethane was either too low to cause damage to the hematopoietic system or there exists a difference in response between dogs and humans as rejards this criterion of damage.

Routine blood counts in general both on the rats and dogs were essentially normal. Throughout this study, the blood count values were subjected to statistical interpretation as recommended by Berg (5). The application of this method to routine counts makes possible the detection of errors in manipulation and technique simultaneously with completion of the count. Immediate recounts can then be made if necessary. The statistical evaluation is accomplished by comparison with tables of normal distribution based on conditions of careful routine. The troublesome task of predicting significance by judgement alone is therefore eliminated.

Pathology

A discussion of the pathology produced by the exposures is a very uncertain undertaking as there was a 57% mortality among the control rats. Twenty-five percent of the kidneys examined showed intense cloudy swelling or degeneration of the convoluted tubules, 46% of the livers showed intense congestion or cloudy swelling, and astonishingly enough fatty degeneration was also evident in 30% of the livers. Lung pathology was noted in 29% largely due to endemic lung infection of the consolidative type caused probably by a virus or pleuropneumonia-like organism according to Nelson (6). In other words, roughly 50% of the control animals had major pathology of the kidney, liver, or lung. Any effect judged to be related to exposure to the chlorinated hydrocarbons must therefore be very carefully weighed with these deficiencies in mind.

The pathology reported for ethylidene and ethylene dichloride, trichloroethylene, tetrachloroethane, and propylene dichloride must be discounted to a large extent when compared to that of the control group. However, the incidence of lung pathology was twice as great among the rats exposed to trichloroethylene and ethylene dichloride as in the control group.

Carbon tetrachloride produced major pathology, <u>i.e.</u>, marked or generalized effects, in 78% of the livers as against 25% among the control rats. Kidney pathology was noted in 43% as against 25% among the controls. There was no demonstrable increase in kidney damage as a result of exposure to

Report 10-13 Page 10.

tetrachloroethylene but 61% of the livers compared to 46% for the controls had major liver pathology. Trichloroethane exposures produced major damage in 52% of the kidneys and 55% of the livers as against a 25 and 46% incidence among the controls. The incidence of lung damage was 78%, 58%, and 59% as against 29% in the control group for carbon tetrachloride, tetrachloroethylene, and trichloroethane respectively.

There was no major pathology produced by exposure to tetrachloroethylene or trichloroethane in the single dog used in each exposure. The animal that inhaled ethylidene dichloride had marked congestion of the lungs but no other pathology. Carbon tetrachloride produced marked cloudy swelling of the kidney and liver with fatty degeneration of the latter. The lungs were markedly congested with leakage of red blood cells into the bronchioles. Trichloroethylene produced fatty degeneration of the liver. Ethylene dichloride affected the kidney primarily in the dog, evident as marked cloudy swelling of the convoluted tubules with attendant desquamation and cast formation. Minor pathology produced by trichloroethane included light cloudy swelling of the liver and slight lung congestion. Tetrachloroethane produced light cloudy swelling of the convoluted tubules of the kidney, marked cloudy swelling of the liver and light congestion of the lungs. Propylene dichloride had no effect upon the kidney but produced marked cloudy swelling of the liver and light of the lungs welling of the liver and severe lung congestion. No pathology was seen in cerebrum, cervical cord, optic or sciatic nerve of any dog.

Discussion

The only method whereby relative toxicity can be absolutely demonstrated is by exposure of animals to vapor concentrations which decrease progressively until a concentration which produces no effect on any criterion of injury is determined.

The most information that can reasonably be given as a result of these comparisons is to rate the compounds in groups exposed to like concentrations. Therefore, on the basis of the evidence presented 1000 ppm. tetrachloroethylene produces more damage than 2000 ppm. trichloroethylene or 1000 ppm. ethylidene dichloride. The latter produces even less effect than 2000 ppm. trichloroethylene. Of the compounds studied at lower concentration 100 ppm. trichloroethane seems to be worse than 200 ppm. tetrachloroethane or ethylene dichloride, which are indistinguishable, with 200 ppm. propylene dichloride producing somewhat less damage. We will not hazard a guess as to the concentration at which minor pathology produced by carbon tetrachloride will become extinct. This information will appear in the literature in the near future as a result of studies currently in progress at another laboratory.

Attention should be called to the fact that our original selection of concentration provides a relative rating system for the compounds in acute exposures, carbon tetrachloride excluded. However, deaths at high concentration are largely a result of anaesthetic effect and in no wise indicate the cumulative damage which may be caused by repeated exposure to low concentrations.

There is apparently very poor correlation between functional tests on dogs and organ pathology produced by carbon tetrachloride, as neither the brom sulfalein nor the phosphatase test indicated any disturbance of function

Report 10-13 Page 11.

during the course of the exposures. The liver degeneration reported for trichloroethylene, on the other hand, agrees with the disturbance noted in both brom sulfalein retention and increased production of serum phosphatase. Although no liver pathology was noted in the dog exposed to tetrachloroethylene, the serum phosphatase values were significantly raised. With tetrachloroethane marked cloudy swelling of the liver was associated with very high phosphatase values, but similar pathology resulting from propylene dichloride was not reflected in the functional tests. Similarly, high urea nitrogen values correlated with light cloudy swelling of the kidney tubules in the tetrachloroethane exposure but failed in the case of propylene dichloride.

Recent work published by Heppel <u>et al.</u> (7, 8, 9, 10) shows that 100 ppm. ethylene dichloride produced no deaths among rats exposed 7 hours per day 5 days a week for a total of 74 exposures. There was no effect upon growth rate and no influence upon fertility. At 200 ppm. 7/12 of the Wistar strain rats died in from 1 to 73 exposures and 8/12 of the Osborne-Mendel strain in from 1 to 6 exposures. No microscopic abnormalities were found in the 5 surviving rats of the Wistar strain which received a total of 86 exposures except fatty degeneration of renal tubules in one rat. A concentration of 400 ppm. for 173 days did not produce mortality but slight fatty metamorphosis was noted in the livers of 5 dogs and in the kidney of one. Functional tests were entirely negative. These results are not in disagreement with our findings on the rats and the dog which survived 75 alternate exposures to 200 ppm. ethylene dichloride.

Heppel <u>et al</u>. (11) have also reported on the exposure of rats and dogs to propylene dichloride. At a concentration of 1000 ppm. deaths occurred among dogs after 24 exposures and among rats after as few as 7 exposures. Some of the animals survived over 100 exposures. Marked visceral congestion, fatty degeneration of the liver, kidney, and less frequently the heart, and areas of coagulation necrosis in the liver were noted in animals dying after less than twelve 7-hour exposures to 1000 to 2200 ppm. He also sites evidence which suggests that the order of increasing lethal action against rats is as follows: Dichloromethane (methylene chloride), trichloroethylene, carbon tetrachloride, dichloropropane (propylene dichloride), and dichloroethane (ethylene dichloride).

Seifter (12) reports that toxic action to trichloroethylene was seen in dogs exposed to 500-750 ppm., 4 to 8 hours daily, 5 to 6 days a week for 3 to 8 weeks. The clinical picture of intoxication consisted of lethargy, anorexia, nausea, vomitting, weight loss, anemia, and liver dysfunction. The degree of toxicity was directly proportional to the intensity of exposure. The most significant change in the intoxicated dogs was the progressive impairment of liver function as shown by the brom sulfalein test. Microscopic sections of the liver taken from dogs that died or were sacrificed during the period of intoxication showed depletion of the glycogen and hydropic parenchymatous degeneration. No pathologic changes were noted in the intestines, adrenals, kidneys, and heart of intoxicated animals. Sections made from dogs that were allowed to recuperate until the brom sulfalein test was normal showed no signs of liver injury.

These findings parallel the results obtained on the single dog exposed to 2000 ppm. trichloroethylene in this study. Liver damage was greater than

Report 10-13 Page 12.

reported by Seifter but this is in line with the higher concentration used. There have been no other comparable animal studies reported in the recent literature.

Tharles P. Carpenter

Charles P. Carpenter

SENIOR INDUSTRIAL FELLOW

Typed: January 14, 1947 - met

Literature

- 1. McCord, C. P., Sterner, J. H., Kline, L. L., and Williams, Pearl E., The Thymol-barbital Test in Experimental Carbon Tetrachloride Poisoning, Occupational Med. 1, 160, 1946.
- 2. Donaldson, H. H.: The Rat: Data and Reference Tables, 2nd ed, Wistar Institute, Philadelphia, 1934. (Table 145 p.234-39).
- 3. Shank, R. E., and Hoagland, C. L.: A Modified Method for the Quantitative Determination of the Thymol Turbidity Reaction of Serum. J. of Biol, Chem. <u>162</u>, 133, 1946.
- 4. Minot, G. R., and Smith, L. W.: The Blood in Tetrachloroethane Poisoning. Arch. Int. Med., <u>28</u>, 687-702, 1921.
- 5. Berg, W. N.: Blood Cell Counts Their Statistical Interpretation. Am. Rev. of Tuberculosis, <u>52</u>, 179-220, 1945.
- 6. Nelson, J. B.: Studies on Endemic Pneumonia of the Albino Rat. J. of Exp. Med., <u>84</u>, 7-23, 1946.
- 7. Heppel, L. A., Neal, P. A., Endicott, K. M., and Porterfield, V. T.: Toxicology of Dichloroethane. I. Effect on the Cornea. Arch. of Ophth. <u>32</u>, 391, 1944.
- Heppel, L. A., Neal., P. A., Endicott, K. M., Orr, M. L., and Porterfield, V. T.: Toxicology of 1,2-dichloroethane II, Influence of dietary factors on the toxicity of dichloroethane. J. Ind. Hyg. & Toxicol., <u>27</u>, 15, 1945.
- Heppel, L. A., Neal, P. A., Perrin, T. L., Endicott, K. M., and Porterfield, V. T.: The toxicology of 1,2-dichloroethane III, Its acute toxicity and the effect of protective agents. J. Pharm. & Exp. Ther., <u>84</u>, 53, 1945.
- Heppel, L. A., Neal, P. A., Perrin, T. L., Endicott, K. M., and Porterfield,
 V. T.: The Toxicology of 1,2-dichloroethane (ethylene dichloride) V,
 The effects of daily inhalation. J. of Ind. Hyg. & Toxicol., <u>28</u>, 113, 1946.

11. Heppel, L. A., Neal, P. A., Highman, B., and Porterfield, V. T.: Toxicology of 1,2-dichloropropane (propylene dichloride). I, Studies on effects of daily inhalations. J. of Ind. Hyg. & Toxicol. <u>28</u>, 1-8, 1946.

Report 10-13 Page 13.

12. Seifter, J.: Liver injuries in dogs exposed to trichloroethylene. J. Ind. Hyg. & Toxicol., <u>26</u>, 250, 1944.

I
D
7*
235.9
06 1.273
100.0
100.0
24
11
6
11

(Continued)

1

K-001717-007

Table 10-15 Page 2.

	Ą	£	U	Dogs	E	E.	G	H	н	
Weight Curve "t" test values Brom Sulfalein Mean % Retention	4.5* <5.0	11.4* <5.0	18.6* 18.6*	12.3 * <5.0	9.7 * <5.0	8.1* <5.0	13.2* <5.0	2.0 <5.0	<5.0	
Urea Nitrogen (Mgm %) Mean Value	11.54	16.48	12.81	12.71	15.84	14.04	20.66*	20.18*	15.23	
Phosphatase Units Mean Value	8.16	79.7	14.78*	19.44*	4.07	, 4.84	33,00*	8.10	5.82	
Sets of Tissues Examined	1	1	Ч	Ч	-1	г	1	-	г	
Pathology	IJ	Ч	Ч	0	Ч	0	г	L	0	

** Significant stimulation of weight gain

Indicates results statistically significantly different from controls. Absence of asterisk on any given line indicates data not amenable to statistical interpretation. *

Table 10-15 Page 3.

.

CODE

A = 1000 ppm. Ethylidene Dichloride

B = 400 ppm. Carbon Tetrachloride

C = 2000 ppm. Trichloroethylene

D = 1000 ppm. Tetrachloroethylene

E = 200 ppm. Ethylene Dichloride

F = 100 ppm. Trichloroethane

G = 200 ppm. Tetrachloroethane

H = 200 ppm. Propylene Dichloride

I = 0 ppm. - Control

DOW CONFIDENTIAL - Do not share without permission

Page 21 of 51

K-001717-007

٠

Table 10-16

South Charleston Works Laboratory Data

on Samples Used for Alternate Daily Vapor Exposures

				Carbon	-			Tetra-
	Ethylidene		- Tetrachlor-		Propylene	Ethylene	Trichlor	
Sample of	Dichloride	ethylene	<u>ethane</u>	Chloride	Dichloride	Dichloride	<u>ethane</u>	ethylene
Sample number	8-254	8-204	8-255	9 -196	8-197	8-198	8-199	8-256
Specific gravity at								
20/20°C.	1.1735	1.4578	1.5071	1.5998	1.1612	1.2554	1.4405	1.6252
cidity as HCl, % by wt.	0.002	0.002	0.054	0.001	0.002	0.002	0.0076	0.002
lkalinity as KOH,								
% by wt.	nil	nil	nil	nil	nil	nil	nil	0.010
esidue on evaporetion,								
gm/100 ml.	0.0032	0.0018	0.0490	nil	0.0006	0.0034	0.0030	0.0004
efractive index N 20	1.4165	1.4168	1.4895	1.4598	1.4395	1.4448	1.4705	1.5050
olor, Platinum-cobalt								
scale	20	10	400	30	3	8	20	30
ree halogens	nil	nil	nil	nil	nil	nil	trace	nil
oiling range, °C at								
760 mm	•							
i.b.p.	53.3	83.3	134.3	75.3	94.1	82.6	110.9	118.0
2 ml.	54.3	84.8	134.8	76.1	95.3	82.9	111.4	119.3
5	55.1	85.8	136.3	76.3	96.0	83.1	112.2	119.5
10	55-3	86.1	138.3	76.3	96.2 -	83.3	112.6	119.7
20	56.1	86.3	139.1	76.3	96.4	83.5	113.2	120.3
30	56.3	86.3	139.3	76.3	96.5	83.6	113.4	120.5
40	56.5	86.3	140.1	76.3	96.5	83.6	113.4	120.5
50	56.8	86.4	140.3	76.5	96.6	83.7	113.4	120.7
60	57.1	86.5	141.3	76.5	96.7	83.7	113.5	121.0
70	57.2	86.6	142,1	76.5	96.7	83.7	113.6	121.0
80	57.3	86.8	143.3	76.7	96.9			121.1
90	57.3		125.1	76.7	97.0	83.7		121.3
93	57.3		146.8	76.7	97.1	83.7		121.4
95	57.3		148.3	76.8	97.3			121.5
97	57.3		150.3	76.8	97.5	83.9		121.5
d.p.	57.5	87.1	151.3	76.8	98.9	84.0	115.4	122.0

.

.

.

Table 10-17

•

•

Range Finding Exposures for Selection

of Concentrations for Alternate Daily Exposures

Compound	Concentration	Number of Exposure x Hours	Fractional Mort- ality after 14 day Observation
Ethylidene Dichloride	16,000 8,000 4,000 2,000	1 x 8 1 x 8 1 x 8 *6 x 8	6/6 2/6 0/6 0/12
Carbon Tetrachloride	8,000 4,000 3,000 1,000	1 x 6.5 1 x 8 1 x 8 *5 x 8	12/12 2/12 0/12 0/12
Trichlorethylene	8,000 8,000 4,000 3,000 3,000 2,000	1 x 8 1 x 4 1 x 8 1 x 4 1 x 8 *6 x 8 *6 x 8	10/12 4/7 6/12 0/12 1/6 4/6 0/6
Tetrachlorethylene Eastman Kodak Co. Product	10,000 8,000 4,000 2,000 2,000	1 x .75 1 x 2 1 x 1 1 x 8 *6 x 8	6/6 6/6 5/6 0/6 3/6
Dow Chemical Co. Product	8,000 8,000 8,000 4,000 4,000 4,000	l x 2 l x l l x 1/2 l x 8 l x 7 l x 4	8/10 3/7 3/10 11/17 18/27 0/8
Ethylene Dichloridc	2,000 2,000 2,000 1,000 1,000 500 200 200	1 x 4 1 x 2 1 x 1 1 x 8 1 x 4 *5 x 8 *43 x 7 43 x 7	12/12 2/6 0/6 6/6 4/6 6/12 0/10 10/10
	(Continued)	

Table 10-17 Page 2.

Compound	Concentration ppm.	Number of Exposure x Hours	Fractional Mort- ality after 14 day Observation
Trichlorethane	2,000	1 x 8	12/12
11 ICHIOT C DIMITE	`	1 x 8	6/12
	1,000	1 x 4	2/12
	500	1 x 8	4/6
	500	1 x 4	1/6
	250	*6 x 8	8/12
	170	30 x 7	7/12
Tetrachlorethane	1,000	1 x 8	1/12
	1,000	1 x 5	0/12
	1,000	1 x 4	3/6
	1,000	1 x 1	0/6
	500	1 x 8	4/6
	500	1 x 4.6	0/6
	375	30 x 7	3/12
Propylene Dichloride	4,000	1 x 4	12/12
	2,000	1 x 8	3/6
	2,000	1 x 4	0/6
	1,000	1 x 8	0/6
	1,000	*5 x 8	4/6
	500	*6 x 8	0/6

* Alternate daily exposures (Maximum 3 x a week)

Repeated daily exposures (Maximum 5 x a week)

Table 10-18

Body Weight and Organ Weight at Sacrifice

N

•

-

.

Sex	Rat No.	Body Length in mm.	Body Weight in gm.	Fat- ness gm. per mm.	Liver Weight in gm.	Kidney Weight in gm.
			Ethylide	ne Dichlorio	1e - 1000 pr	<u>m</u> .
М	38631	243	418	1.72	14.04	2.70
	39819	244	343	1.41	11.37	2.41
	39820 38697	237 238	314 310	1,32 1.30	10.81 12.01 14.02	2.36 2.52
	38737	244	371	1.52	14.02	2.57
	39821	232	316	1.36	11.90	2.29
	39822	238	340	1.43	12.07	2.26
F	38492	218	238	1.09	7.01	1.65
	38524	219	217	0.99	7.86	1.44
	39744	218	232	1.06	8.79	1.60
	39748	221	238	1.08	9.32	1.72
	39 75 0	214	245	1.14	7.73	1.49
	39751	222	252	1.14	8.50	1.67
	39778	215	232	1.08	8.09	1.81
		Ca	arbon Tetra	chloride - A	400 ppm.	
М	39828	237	302	1.27	14.29	2,36
	38634	229	290	1.27	11.76	2,62
F	38506	224	247	1.10	14.24	1.92
	38510	226	261	1.15	13.21	2.11
	38522	227	273	1.20	13.32	2.32
	38534	217	216	1.00	11.44	1.87
		<u>T</u> 1	richloroeth	ylene - 2000	. mgg C	
М	38632 38645 38648 38651 38696	232 235 238 238 238 236	276 298 348 280 298	1.19 1.27 1.46 1.18 1.26	9.11 10.03 11.61 11.64 12.36	1.87 1.95 2.20 2.06 2.35
F	38701	239	316	1.32	11.05	2.20
	39758	210	218	1.04	7.78	1.31
	38547	220	232	1.05	8.52	1.47
	38573	222	234	1.05	8.41	1.60

Table 10-18 Page 2.

Rat	Body Length in mm-	Body Weight in gm.	Fat- ness gm. per	Liver Weight in	Kidney Weight in gm.
					<u> </u>
38702	21/	226	1.06	8.61	1.67
					1.95
					1,76
					2,05
					2.04
					1.33
					1.27
					1.57
					1.55
					1.62
39766	212	×10	T.00	7.12	1.43
	J	Sthylene Di	chloride - 2	200 pom.	
39017	243	342	1.41	12.35	3.20
39018	249	367	1.47	12.28	3.23
39012	255	405	1.59	16.17	3.08
39020		360	1.43	11.51	2.45
		269	1.20	9.57	2.05
			1.03	8.78	1.59
		246	1.09	9.19	1.81
38591	212	200	0.94	8.17	1.55
		Trichloroe	thane - 100	ppm.	
38626	236	319	1,35	9.82	2.10
				10.35	2.18
					2.39
39021	242	374	1.55	12.75	2.55
				6.60	1.50
<u>384</u> 93	218	664	1.02	0.00	
38493 38505	218 215	224 236	1.03 1.10		
38505	215	236	1.10	6.58	1.25
38505 38525	215 227	236 249	1.10 1.10	6.58 7,45	1.25 1.65
38505 38525 38556	215 227 221	236 249 238	1.10 1.10 1.08	6.58 7.45 9.05	1.25 1.65 1.71
38505 38525 38556 38568	215 227 221 234	236 249 238 285	1.10 1.10 1.08 1.22	6.58 7.45 9.05 8.40	1.25 1.65 1.71 1.65
38505 38525 38556	215 227 221	236 249 238	1.10 1.10 1.08	6.58 7.45 9.05	1.25 1.65 1.71
38505 38525 38556 38568 38568 38593	215 227 221 234 218 210	236 249 238 285 238 202	1.10 1.10 1.08 1.22 1.09	6.58 7.45 9.05 8.40 8.01 6.75	1.25 1.65 1.71 1.65 1.35
38505 38525 38556 38568 38593 39773	215 227 221 234 218 210	236 249 238 285 238 202 <u>Setrachloro</u>	1.10 1.08 1.22 1.09 0.96 ethane - 200	6.58 7.45 9.05 8.40 8.01 6.75) ppm.	1.25 1.65 1.71 1.65 1.35 1.26
38505 38525 38556 38568 38593 39773 39773	215 227 221 234 218 210	236 249 238 285 238 202 <u>Setrachloro</u> 320	1.10 1.08 1.22 1.09 0.96 ethane - 200 1.36	6.58 7.45 9.05 8.40 8.01 6.75 <u>0 ppm</u> . 10.76	1.25 1.65 1.71 1.65 1.35 1.26 2.32
38505 38525 38556 38568 38593 39773 39773 38623 38623 38647	215 227 221 234 218 210 235 234	236 249 238 285 238 202 Tetrachloro 320 268	1.10 1.08 1.22 1.09 0.96 ethane - 200 1.36 1.14	6.58 7.45 9.05 8.40 8.01 6.75 <u>0 ppm</u> . 10.76 8.85	1.25 1.65 1.71 1.65 1.35 1.26 2.32 2.12
38505 38525 38556 38568 38593 39773 39773	215 227 221 234 218 210	236 249 238 285 238 202 <u>Setrachloro</u> 320	1.10 1.08 1.22 1.09 0.96 ethane - 200 1.36	6.58 7.45 9.05 8.40 8.01 6.75 <u>0 ppm</u> . 10.76	1.25 1.65 1.71 1.65 1.35 1.26 2.32
	No. 38702 38705 39838 39834 39014 39760 39761 39763 39765 38610 39765 38610 39766 39766 39017 39018 39012 39020 39853 38499 38565	No. mm. 38702 214 38705 225 39838 226 39838 226 39834 227 39014 227 39760 211 39761 214 39763 216 39765 215 38610 214 39766 215 38610 214 39766 215 38610 214 39765 215 38610 214 39765 215 38610 214 39765 215 38012 255 39020 252 39853 224 38499 215 38591 212 38591 212 38626 236 38663 239	No.mm.gm.Tetrachloret 38702 214 226 38705 225 260 38705 225 260 39838 226 218 39834 227 260 39014 227 250 39760 211 201 39761 214 200 39763 216 213 39765 215 205 38610 214 215 39766 215 216 Ethylene Di 39017 243 342 39018 249 367 39012 255 405 39020 252 360 39853 224 269 38499 215 222 38565 225 246 38591 212 200 Trichloroe 38626 236 319 38663 239 310	No.mm.gm.mm.Tetrachlorethylene - 100 38702 214 226 1.06 38705 225 260 1.16 39838 226 218 0.97 39834 227 260 1.15 39014 227 250 1.10 39760 211 201 0.95 39761 214 200 0.94 39763 216 213 0.99 39765 215 205 0.95 38610 214 215 1.00 39766 215 216 1.00 Ethylene Dichloride - 2 39017 243 342 1.41 39018 249 367 1.47 39012 255 405 1.59 39020 252 360 1.43 39853 224 269 1.20 38499 215 222 1.03 38565 225 246 1.09 38591 212 200 0.94 Trichloroethane - 10038626 236 319 1.30	No. mm. gm. mm. gm. Tetrachlorethylene - 1000 ppm. 38702 214 226 1.06 8.61 38705 225 260 1.16 9.67 39838 226 218 0.97 8.62 39834 227 260 1.15 8.90 39014 227 250 1.10 8.95 39760 211 201 0.95 6.84 39761 214 200 0.94 6.38 39763 216 213 0.99 8.95 39765 215 205 0.95 7.94 38610 214 215 1.00 6.93 39017 243 342 1.41 12.35 39018 249 367 1.47 12.28 39012 255 405 1.59 16.17 39020 252 360 1.43 11.51 39853

•

.

•

Table 10-18 Page 3.

•		Body	Body	Fat-	Liver	Kidney
		Length	Weight	ness	Weight	Weight
	Rat	in	in	gm. per	in	in
Sex	No.	mm.	gm.	mm	gm.	gm.
		Tetra	chloroethan	e - 200 ppm	(Cont'd.)	
					······································	
М	39855	238	322	1.35	11.42	2.11
	40458	255	428	1.67	16.85	3.35
	38731	242	330	1.36	11.90	2.38
	4 0461	230	284	1.24	14.79	2.21
	40462	219	244	1.11	9.01	1.93
F	<u>3</u> 8615	224	236	1.05	8.45	1.60
	38502	218	229	1.05	8.90	1.71
		Pro	opylene Dic	<u>hloride - 20</u>	.mag OC	
М	38687	247	390	1,58	12.97	2.40
141	39007	250	416	1.66	13.91	2.94
	38738	220	214	0.97	8.35	1.47
	40460	240	352	1.47	13.88	2.62
F	38497	220	240	1.09	9.38	1.82
г	38501	216	218	1.09	9.38 8.20	1.45
				1.03	7.57	1.51
	38514	223 220	230 228			
	38571			1.04	7.87	1.53
	39775	221	220	1.00	8.12	1.50
			\underline{Contro}	<u>ls - 0 ppm.</u>		
М	40343	256	438	1.71	14.90	2.46
	40464	248	400	1.61	14.96	2.91
	38693	242	340	1.40	12.27	2.40
	38711	247	360	1.46	12.83	2.52
	40466	250	394	1.57	16.86	3.04
F	38581	217	226	1.04	7.10	1.55
-	39776	224	228	1.02	7.13	1.60
	38585	223	244	1.02	7.32	1.48
	38587	232	224	0.96	7.31	1.55
		235	270	1.15	8.21	1.84
	38599 201717	235 221	270 218	0,99	7.93	1.48
	39777	6.6.L	KT0	0.77	(•7)	L • 40

.

Table 10-19

Results of Functional Tests on Dogs

.

Exposed to Chlorinated Hydrocarbons

Compound		Brom			-
and	- .	Sulfalein	Urea N	Phosphate	Thymol
Dog No.	Date	% Retention	<u>mgm. %</u>	Units	Units
Ethylidene Dichloride	11-20-45	<5.0	5.50	7.53	-
1000 ppm.	12-20-45	<5.0	7.81	10.21	<2.0
D36000	2-15-46	<5.0	8.13	7.50	<2.0
	3-12-46	<5.0	10.50	13.00	<2.0
	4-12-46	<5.0	9.63	11.40	<2.0
	5-14-46	<5.0	16.75	6.60	2.6
	6-14-46	<5.0	12.50	3.60	<2.0
	6-21-46	<5.0	13.00	4.20	<2.0
	6-28-46	<5.0	10.25	5.80	<2.0
Mean	·	•	11.54	8.16	
Carbon Tetrachloride	11-20-45	<5.0	4.75	1.66	-
400 ppm.	12-20-45	<5.0	9.56	14.26	<2.0
036011	2-15-46	<5.0	13.88	1.50	<2.0
	3-12-46	<5.0	23.88	5.40	<2.0
	4-12-46	<5.0	15.63	5.60	<2.0
	5-14-46	<5.0	26.25	5.40	5.0
	6-14-46	<5.0	12.50	3.60	<2.0
	6-21-46	<5.0	13.00	4.20	<2.0
	6-28-46	<5.0	10.25	5.80	<2.0
Mean			16.48	4.64	
frichlorethylene	11-20-45	<5.0	6.38	4.66	-
2000 ppm.	12-20-45	<5.0	9.56	4.39	<2.0
036001	2-15-46	14.4	12.50	7.50	<2.0
	3-1-46	33.4	-	13.80	_
	3-12-46	20.9	14.25	17.70	<2.0
	4-12-46	15.6	13.88	33.60	<2.0
	5-14-46	17.5	30.25	11.40	<2.0
	6-14-46	15.1	12.25	9.60	<2.0
	6-21-46	16.5	15.38	9.00	<2.0
	6-28-46	15.5	11.13	15.60	<2.0
Mean			12.81	14.78*	
Fetrachlorethylene	11-20-45	<5.0	4.63	6.16	_
1000 ppm.	12-20-45	-	9.38	9.24	<2.0
D36003	2-15-46	<5.0	9.88	19.80	<u></u>
	3-1-46	<5.0	-	14.20	
	3-12-46	<5.0	16.63	12.90	<2.0
	4-12-46	<5.0	8.50	28.80	<2.0

Table 10-19 ' Page 2.

· ·

Compound		Brom	}		
and		Sulfalein	Urea N	Phosphate	Thymol
Dog No.	Date	% Retention	mgm. %	Units	Units
	~ ~	(7 0			
Tetrachlorethylene	5-14-46	<5.0	20.50	25.20	<2.0
1000 ppm.	6-14-46	<5.0	10.60	14.40	2.3
D36003	6-21-46	<5.0	15.38	19.80	<2.0
	62846	<5.0	7.50	20.40	<2.0
Mean			12.71	19.44*	
Ethylene Dichloride	11-20-45	<5.0	9.25	1.66	
200 ppm.	12-20-45	<5.0	9.69	3.18	<2.0
D36002	2-15-46	<5.0	13,00	1.80	<2.0
-	3-12-46	<5.0	17.75	5.10	<2.0
	4-12-46	<5.0	12,88	11.40	<2.0
	5-14-46	<5.0	25.50	4.20	3.3
	6-14-46	<5.0	12.75	2.40	<2.0
	6-21-46	<5.0	17.13	1.80	<2.0
	6-28-46	<5.0	11.88	1.80	<2.0
Mean			15.84	4.07	· ·
Trichlorethane	11-20-45	<5.0	5.50	3.03	_
100 ppm.	12-20-45	<5.0	9.38	4.56	<2.0
D37214	2-15-46	<5.0	9.88	4.50	<2.0
	3-12-46	<5.0	15.63	4.20	2.7
	4-12-46	<5.0	10.25	10.20	<2.0
	5-14-46	<5.0	27.00	4.20	-
	6-14-46	<5.0	12,88	3.60	<2.0
	6-21-46	<5.0	15.63	4.20	<2.0
	6-28-46	<5.0	_7.00	3,00	<2.0
Mean	0-~0-40		14.04	4.84	
				••••	
Tetrachlorethane	112045	<5.0	11.38	4.53	
200 ppm.	12-20-45	<5.0	10.00	5.31	<2.0
D36007	2-15-46	<5.0	19.25	26.10	<2.0
	3-1-46	<5.0	-	31.50	-
	3-12-46	<5.0	23.00	27.60	<2.0
	4-12-46	<5.0	20.75	48.60	<2.0
	5-14-46	<5.0	20.00	33.60	3.3
	6-14-46	<5.0	20.13	47.40	<2.0
	6-21-46	<5.0	21.50	27.60	<2.0
	62846	<5.0	20.00	21.60	<2,0
Mean			20.66*	33.00*	

.

.

.

I

Table 10-19 Page 3.

Compound		Brom		<u></u>	
and		Sulfalein	Urea N	Phosphate	Phymol
Dog No.	Date	% Retention	mgm. %	Units	Units
Propylene Dichloride	11-20-45	<5.0	5.00	6.16	-
200 ppm.	12-20-45		10.00	11.54	<2.0
D36004	2-15-46	<5.0	16.38	7.50	<2.0
	3-12-46	<5.0	22,50	8.40	2.7
	4-12-46	7.25	17.13	13.20	<2.0
	5-14-46	<5.0	27.00	7.80	<2.0
	6-14-46	<5.0	18.88	5.40	<2.0
	6-21-46	<5.0	20.75	6.60	<2.0
	6-28-46	<5.0	18.63	7,80	<2.0
Mean			20.18*	8.10	
Control	11-20-45	<5.0	9.00	6.03	-
	12-20-45	<5.0	8.88	11.82	<2.0
D36009	2-15-46	<5.0	13.88	7.80	<2.0
	3-12-46	<5.0	18.25	7.80	<2.0
	4-12-46	<5.0	13.88	10.20	<2.0
	5-14-46	<5.0	25.20	4.80	3.2
	6-14-46	<5.0	12.88	2.40	<2.0
	6-21-46		12.25	4.50	<2.0
	6-28-46	<5.0	10.25	3.25	<2.0
Mean	• •	•	15.23	5.82	
				-	
Control	11-20-45	<5.0	4.75	4.66	-
	12-20-45	<5.0	9.38	13.20	<2.0
D36010	2-15-46	<5.0	13.63	7.50	<2.0
-	3-12-46	<5.0	20.13	7.20	<2.0
	4-12-46	<5.0	13.88	11.40	<2.0
	5-14-46	<5.0	15,25	4.80	3.3
	6-14-46	<5.0	12.75	3.60	<2.0
	6-21-46	<5.0	14.50	1.80	<2.0
	6-28-46	<5.0	12.50	3.00	<2.0
Mean			14.66	5.61	
			• -	-	

.

.

Entries above line represent pre-exposure levels.

* Statistically different from control values as determined by the "t" test.

Table 10-20

•

•

Individual Blood Counts

						ferent		
Date	RBC	Hbg	WBC	N	L	M	E	В
			chloride -			_		
						2	-	-
						3		
						5		
							-	-
6-26-46	6.97	15.2	13.3	79	16	5		
	Car	bon Tetrac	hloride - 4	.00 ppm	,			
11-29-45	7.29	16.3	9.0	66	29	5		
						í		
						3	-	1
						2		_
						5		
						5		
-						5		
				76	20	4		
	<u>Tr</u>	ichloroeth	ylene - 200	0 ppm.				
11-21-45	6.20	14.2	19.1	79	18	3		
						-	-	_
						2		
						~		
						2	_	_
						â	-	-
						-		
	100	14011202000			•			
11-21-45	6.41	13.7	12.65	76	20	4		
12-20-45		15.2	13.55	81	18	l	-	-
2-13-46	6.90	15.0	9.15	84		1		
3-13-46	7.22	15.9	12,9	76	21	4		
4-15-46	7.52	15.9	16.95	81	16	3		
5-16-46			15.05	70	28	2		
6-3-46						2		
6-26-46	6.66	15.5	8.0	71	25	- 4		
	11-29-45 $12-21-45$ $2-14-46$ $3-14-46$ $4-16-46$ $6-3-46$ $6-26-46$ $11-21-45$ $12-20-45$ $2-14-46$ $3-14-46$ $4-16-46$ $5-16-46$ $6-3-46$ $6-26-46$ $11-21-45$ $12-20-45$ $2-13-46$ $3-13-46$ $4-15-46$ $5-16-46$ $6-3-46$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11-21-45 6.78 13.9 10.7 84 $12-20-45$ 7.08 16.8 $22.9*$ 86 $2-14-46$ 7.03 17.0 $7.8*$ 81 $3-14-46$ 6.65 17.0 6.8 62 $4-16-46$ 7.27 16.1 $14.2*$ 79 $5-16-46$ 7.92 17.5 $7.05*$ 83 $6-3-46$ 7.31 18.0 12.0 80 $6-26-46$ 6.97 15.2 13.3 79 Carbon Tetrachloride - 400 ppm. $11-29-45$ 7.29 16.3 9.0 66 $12-21-45$ 9.81 15.0 9.25 $2-14-46$ 7.21 16.8 13.05 $84*$ $3-14-46$ 6.78 16.1 11.1 84 $4-16-46$ 7.45 16.0 7.5 76 $5-16-46$ 7.8 16.0 9.15 68 $6-3-46$ 7.77 17.2 9.6 65 $6-26-46$ 6.81 16.1 10.65 76 Trichloroethylene - 2000 ppm. $11-21-45$ 6.20 14.2 19.1 79 $2-20-45$ 6.74 13.7 19.1 89 $2-14-46$ 5.03 13.1 17.7 75 $4-16-46$ 5.11 12.5 11.45 72 $6-3-46$ 5.13 12.3 11.1 78 $2-14-46$ 5.03 13.1 17.7 75 $4-16-46$ 5.13 12.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 10-20 Page 2.

Animal		··· ··· ··· ··· ··· ··· ··· ··· ··· ··				Diff	erent	ials	
Number	Date	RBC	Hbg	WBC	N	L	M	E	В
		T.t.L.] Di - 3		0				
		Eth	ylene Dich	loride - 20	U ppm.				
D36002	11-21-45	6.04	13.5	9.0	78	18	3		
	12-20-45	5.36	13.2	6.75	78	20	2	-	
	2-13-46	7.03	14.1	9.4	60*	35*	2	-	3
	3-13-46	6.15	13.6	6.4	66	29	5	_	_
	4-15-46	5.80	13.1	6.8	72	27	í	-	_
	5-15-46	5.50	13.3	7.9	69	28	3		
	6-3-46	5.95	15.5	8.55	72	23	5		
	6-26-46	6.08	14.6	10.45	75	23	2	_	
	0-20-40	0.00	14.0	10.49	0	~)	2	_	-
		<u>T</u>	ric hloroet	<u> hane – 100</u>	ppm.				
D37214	11-29-45	5.9	13.7	13.7	74	25	2		
	12-21-45	7.59	15.8	9.15	1-4	~)	~		
	2-13-46	8.69	17.2	9.00	83	15	2		
	3-13-46	7.45	15.2	16.2*	79	17	2 4		
	4-15-46	7.16	16.0	12.85	75 75	24	1		
				-			1		
	5-15-46	6.55	16.6	13.3	77	22			
	6-3-46	9.02	18.1	6.85*	87	12	1		
	6-26-46	7.85	13.7	8.0	81	16	3		
		<u>Te</u>	trachloroe	thane - 200	ppm.				
D36007	11-29-45	6.0	14.8	11.9	67	28	5		
10000	12-21-45	8.0	15.6	10.6	07	χU)		
			-		60	0.0	,		
	2-13-46	6.46	14.0	16.05	68	28	4		
	3-13-46	5.32	14.9	7.5 5 *	74	22	4		
	4-15-46	6.84	13.6	10.55	67	26	7		
	5-15-46	5.40	13.7	9.65	67	28	5		
	6-3-46	6.27	13.5	7.9	63	28	9		
	6-26-46	6.52	13.2	6.3	66	30	4		
		Pro	pylene Dic	hloride - 2	00 ppm	•			
D36004	11-21-45	5.91	12.8	-	81	16	2		
150004	12-21-45			8.75	81 79	20	2 1		
		7.48	13.5				Ŧ	-	-
	2-13-46	5.88	16.0	5.6	74	26	~		
	3-13-46	6.28	15.1	10.55	74	24	2		
	4-15-46	4.95*	15.0	9.90	68	28	3 5 2		
	5-15-46	6.89*	15.8	10.45	68	27	5		
	6-3-46	7.92	16.5	6.15	61	37			
	6-26-46	6.33	15.0	8.25	60	36	4		
	6-26-46	6.33	15.0	8.25	60	36	4		

•

.

(Continued)

Table 10-20 Page 3.

Animal						Diff	erenti	ials	
Number	Date	RBC	Hbg	WBC	N	L	M	E	В
			Co	ontrol					
D36009	11-29-45	5.61	13.7	15.75	78	18	2	2	-
	12-21-45	7.28	13.2	12.85	66	34*	-		-
	2-14-46	6.74	16.0	18.85	76	23	l		
	3-14-46	7.64	15.0	23.45	75	23	2		
	4–16–46	6.86	13.1	20.5	80	20			
	5 -16-4 6	6.78	14.9	17.6	87	12	2		
	6-3-46	7.84	15.5	14.55	78	21	1		
	6-26-46	6.85	15.8	14.6	81	16	3		
			Cc	ntrol					
D36010	12-21-45	7.56	12.3	26.65	85	10	5	-	-
	1-24-46	6.13	14.0	11.15*	86	13	2		
	2-13-46	5.46	14.2	12.2	82	18	2 1		
	3-14-46	5.41	15.0	10.55	85	15	1		
	4-15-46	8.39	15.0	12.35	83	15	2		
	5-15-46	5.28	14.2	14.90	78	18	4		
	6-3-46	7.32	17.0	11.5	85	11			
	6-26-46	5.57	16.2	14.8	81	14	4 5		
		D: 66	7 7	o comto of	6 06	(

.

Differential leucocyte counts of 6-26-46 are the mean values of from 2 to 6 counts of 100 white blood cells from different preparations all made at the same time. On 6-3-46 and 6-26-466 x 100 cells were counted from the dogs exposed to tetrachloroethane and trichloroethane.

Ethylidene Dichloride - 1000 ppm.

R3 8633	12-31-45 2-5-46 4-16-46	5.93 8.93 10.34	14.9 15.0 17.0	8.75 23.0* 17.55	12 11 11	88 87 87	- 2 2		- - -
R38 695	12-31-45 2-5-46 4-16-46	6.61 8.56 9.79	14.1 16.1 16.0	10.95 14.8 18.85	13 15 13	86 84 86	1 1 1	-	-
R 38724	1-24-46 2-5-46	7.51 8.79	15.0 16.5	20.15 21.3	6 10	94 89	ī	-	-
R38716	12-31-45 2-5-46	7.92 9.06	16.0 15.1	14.35 17.45	11 16	89 83	-		-
R38727	12-31-45 2-5-46 4-16-46	5.15 7.77 9.31	14.0 16.8 15.8	13.4 16.65 15.15	33 15 17	66 82 81	1 3 2	+	

(Continued)

Table 10-20 Page 4.

Animal	· · · · · · · · · · · · · · · · · · ·					Dift	erent	ials	
Number	Date	RBC	Hbg	WBC	N	L	М	E	В
· · ·					· · · ·				
		<u>Ethyliden</u>	<u>e Dichlori</u>	<u>de - 1000 p</u>	opm. (Co	ont'd.)			
R39821	3-11-46	7.34	13.8	11.05	10	88	2	_	_
	4–16–46	8.61	15.7	19.35*	10	90	κ.	-	_
							-	1	-
	7–2–46	5.69	15.0	22.6	29	70	-	T	-
R38537	12-31-45	6.44	14.0	14.0	22	74	4	_	_
	2-5-46	5.98	15.1	14.75	14	81	4	l	-
R 3849 2	12-31-45	7.15	14.9	19.15	16	82	2		
11/0472							2		-
	2-5-46	6.81	15.0	17.5	17	81	2	-	-
	4-16-46	7.45	15.0	27.5	19	81	-		-
	7-1-46	8.93	14.5	9.0*	39	60	1	-	-
R38589	12-31-45	7.96	14.0	16.3	12	86	-	-	2
	2-5-46	7.24	15.1	15.65	14	85	1	_	2
	~-)~40	1 • ~~~~	1).1	±)•0)		0)	-	-	
R38584	12-31-45	7.74	15.0	16.45	18	82	*		_
	2-5-46	8.42	16.5	22.2	31	68	1	-	-
	~ > +0	0.4		~~~~~	/_	00	-		
39751	3–11–46	7.25	15.4	11.9	11	86	3	-	-
	4-16-46	8.77	14.2	22.8*	14	86	-	<u> </u>	-
	7-2-46	8.43	15.3	11.85*	24	76	_	-	_
	1~40	0,42	_// /		~-	10			
R39778	3–11–46	7.96	16.2	16.45	8	88	4	-	-
	4-16-46	8.17	15.8	23.8	. 11	89	_	-	_
	7-2-46	8.36	14.0	12.65*	12	88	-	-	_
	1~40				-~				
		Car	bon Tetrac	hloride - 4	.00 ppm				
R38650	12-31-45	7.78	14.9	21.9	10	88		_	2
1,900,90				20.6	17	81	2	-	~
	2-7-46	9.12	15.2	20.0	17	or	2	-	
R38619	12-31-45	6.25	15.8	10.45	10	90	-	_	-
-	2-7-46	6.71	15.2	20.0*	7	93	-	-	-
	~ • +•				·				
R38736	12-31-45	5.79	14.5	10.8	16	82	2	-	
	2-7-46	9.41*	14.0	24.4*	9	91	-	***	
	4-18-46	7.90	14.0	30.0	20	75	5	-	
R38 690	12-31-45	7.50	16.0	22.15	18	82	-		-
	2-7-46	10.45	15.5	18,6	34	65	1	-	
				- • •					
R38725	1-24-46	6.55	13.1	14.85	11	88	1		-
and the second	2-7-46	7.65	13.1	22.0	12	88	-	-	_
	4-18-46	7.61	13.0	29,95	36	62	2	-	-
	4-10-40	1.01		~/ • / J			~		

-

· •

.

· •

Table 10-20 Page 5.

Animal							ferent	ials	
Number	Date	RBC	Hbg	WBC	N	L	M	E	В
						-			
		<u>Carbon</u> T	etrachlori	.de - 400 pr	m. (Co	<u>nt'd.</u>)			
R38 510	12-31-45	7.88	13.0	16.65	11	89	-	-	
	2-7-46	8.27	15.0	20.95	17	82	— ·	-	
	4-18-46	10.30	13.0	22.95	21	75	4	_	
	7-1-46	7.27	12.9	11.25*	35	65	-	-	~
R 38500	12-31-45	3.84	13.3	10.2	20	m	,		
	2-7-46	7.66*				79 75	1	-	-
	2-1-40	(.00*	14.2	21.75*	23	75	2	-	
R39753	3-11-46	6.3	15.2	28.6	11	85	4	-	-
	4-18-46	9.35	14.8	12.6*	10	84	6	-	+
R38555	1-22-46	7.24	15.0	18.6	33	64	2		
	2-7-46	8.15	15.5	22.5	55 14	84	3	-	-
							2	-	-
	4–18–46	6.75	14.0	26.15	20	79	1		-+
R38588	12-31-45	9.06	13.6	13.35	19	80	-	1	-
	2-7-46	7.55	14.0	13.7	21	77	2	-	
		77.05	15 0	10 55	0	00	7		
R38577	12-31-45	7.05	15.0	12.75	9	90	1	— .	-
	2-7-46	9.35	16.7	22.75*	17	83	-	-	-
	4–18–46	9.47	14.2	22.3	9	91	-	-	
		Tr	ichloroeth	<u>ylene – 200</u>	0 ppm.				
R38641	1-2-46	6.17	14.9	15.8	16	84	_	_	_
	2-19-46	7.62	14.0	32.95*	9	89	2	_	-
							2	-	
	4–18–46	9.07	14.9	16.35*	12	85	3	-	-
R38648	1-22-46	8.85	15.1	16.95	24	76	-	-	-
	2-28-46	7.52	14.0	28.95*	9	86	5	-	-
	4-18-46	9.23	15.9	10.85*	12	86	2	-	
	7-1-46	9.02	15.2	5.8	25	75	-	-	-
DOOLIE	1 2 14	8.59	15.9	15.6	12	87	г		
R 38645	1-2-46		-		21		1		-
	2-19-46	6.53	14.1	10.6		74	5	-	-
	4-18-46	8.71	14.2	16.4	14	85	. 1	-	
	7-1-46	7.34	16.8	7.20*	27	72	1		-
R38701	1-2-46	7.01	13.9	9.8	21	77	2	-	
	2-19-46	8.17	15.2	21.7*	13	85	2	~	
	4-18-46	9.84	14.2	16.0	16	84	-	~	_
	7-1-46	4.97*	15.9	8.35*	39	59	2		-
				~ •					
	/~1-40								
38529	1-2-46	5.78	14.0	12.15	17 11	83 89	-	-	_

•

•

٠

(Continued)

Table 10-20 Page 6.

Animal		~. ·	· · · · · ·		•	Dif.	ferent:	ntials			
Number	Date	RBC	Hbg	WBC	<u>N</u>	L	M	E	В		
	•		· · · · · · · · · · · · · · · · · · ·	· `.		·					
		Trichl	oroethylene	<u>- 2000 ppn</u>	1. (Con-	<u>t'd.</u>)					
38503	1-2-46	. 7.90	14.8	20.6	11	87	2	-			
	2–19–46	6.37	14.9	23.3	17	81	2	-	-		
139758	3-11-46	6.7	15.9	21.4	6	92	2		_		
	4–18–46	6.55	13.0	15.5	1 3	85	2	-	-		
	7-2-46	6.04	Not taken	12.15	25	73	1	1	-		
			poor bleed	er							
38547	1-2-46	8.11	18.5	15.55	12	86	2	-	_		
	2-19-46	7.87	15.1	9,15	26	73	1		_		
	4-18-46	9.38	14.8	22,25*	26	72	2	-	-		
	7-1-46	8.34	16.7	5,45*	44	56	-		•==		
		Te	trachloroet	hylene - 10	mqq 00(•					
							-				
R38655	1-2-46	7,53	13.1	13.75	27	72	1	T	-		
	2-20-46	13.80*	14.0	33.65*	9	90	1	-	-		
	4-17-46	9.03	14.3	22.2	24	76	-	-	-		
38649	1-2-46	8,04	13.2	15.05	14	86	-	-	_		
	2-20-46	7.65	14.1	21.35	19	79	.2	-	-		
R39836	3-11-46	5.8	14.0	13.7	14	84	2	_	_		
	4-17-46	7.8	16.5	18,05	26	66	8		-		
R3 871.3	1-22-46	7.55	16.9	14.85	. 13	85	2		-		
	2-28-46	6.68	13.0	24.4	9	90	1	-	-		
	4-17-46	9.64		19 .95							
R38702	1-2-46	6.07	13.1	9.00	11	85	4	-	-		
-	2-20-46	7.27	14.0	21.9*	16	84	-	-	-		
	4-17-46	8.67	14.0	17.55	27	72	1	-	-		
	7-1-46	6.50	16.8	10.0	41	59	-	-	-		
R38705	1-2-46	8.74	14.8	11.1	14	85	1	_	_		
	2-20-46	8.97	15.2	10.45	29	70	ī	-	_		
	2-20-40 4-17-46	7.71	15.3	21.95*	31	67	2	-	_		
	7-1-46	8.46	14.9	11.35*	46	54	к 	_	_		
220560	1-2-46	5.37	18.0	9.45	8	89	3		_		
R38569					12	88		-	-		
	2-20-46	6,83	15.1	17.65*			-				
	4-17-46	8.51	13.0	15.7	24	76	-	-	-		
38496	1-2-46 2-20-46	7.53	14.0	13,8	16	83	1	-	-		

.

.

Table 10-20 Page 7.

Animal					· · ·	Differentials				
Number	Date	RBC	Hbg	WBC	N	L	M	E	B	
			·							
		Tetrachlo	proethylene	e - 1000 ppm	n. (Con	<u>t'd.</u>)				
R 39761	3-11-46	8.55	14.1	23.1	7	89	4	-	_	
	4-23-46	7.63	12.0	24.7	9	76	15	_	-	
	7-2-46	7.37	15.0	11.25*	24	74	2	· _	-	
	1 ~ 40					1-4	~			
R39765	3-11-46	6.6	15.9	16.2	8	86	6	-	-	
	4-23-46	8.9	14.0	22,2	18	82	-	-	-	
	7-2-46	9.17	14.2	12.7*						
	1 ~ 40	/•= /	241~	22.17						
R38610	1-22-46	7.87	15.2	11.05	32	68		-	-	
	2-20-46	7.52	14.1	18.85	16	82	2	-	_	
	4-23-46	8.75	13.1	22.05	13	85	2	-	_	
	7-1-46	8.04	16.0	9.25*	37	62	ĩ	_	_	
	7-1-40	0.04	10.0	/•~J*	1	Űk	-	-		
R39767	3-11-46	5.78	15.6	8.8	9	90	1	-	-	
	4-23-46	6.69	14.0	18.6	21	75	4	-	_	
	, , ,	r -	·				•			
		\underline{Ethy}	rlene Dichl	oride - 200) ppm.					
R39016	1-22-46	6.62	11.7	17.7	17	78	5	-	_	
	2-19-46	4.56	10.2	23.95	24	75	í	_	_	
	4-19-46	4.25	10.9	11.85*	14	85	i	_	_	
					22		1	-	-	
	7–1–46	5.50	10.0	9.95	~~	77	Ŧ		-	
R38703	1-2-46	6.56	13.4	13.25	17	82	1	-	_	
	2-19-46	9.47	15.3	14.4	15	84	ī	_	_	
		2 4 4 1		+ • ·+	±2	04	-			
R39847	3-11-46	4.72	15.1	11.8	8	91	1	-	-	
	4-19-46	6.31	13.0	16.0	18	82	-	_	-	
R39018	1-22-46	5,11	12.8	10.5	11	84	5	-	_	
	2-19-46	7,63	15.0	15.8	. 30	68	2	_	_	
	4-19-46	8.27	14.4	24.0	34	62	4			
	7-1-46	8.68	13.2	5•95 *		56	4	-	-	
	7-1-40	0.00	L)•<	J•7J^	44	50	-	-	-	
R39853	3-11-46	3.66	-	10.8	19	80	1	-	-	
	4-19-46	5.70	16.0	24.8*	19	78	3	_	_	
	7-2-46	7.74	14.5	11.6*	30	70		_	-	
		1 0 144		TT • 0 ¹		10	·•• .	-	-	
R38557	1-2-46	6.81	14.6	10.35	11	88	_		1	
`	2-21-46	8.53	14.1	19.55*	30	70	_		-	
		- • / /				,0	-		-	
38533	1246	6.53	16.0	9.15	22	76	1	1	_	
							*	*	-	
	2-21-46	6.39	14.4	13.3	20	80	-	÷		

•

.

.

Table 10-20 Page 8.

Animal							ferent		
Number	Date	RBC	Hbg	WBC	N	L	M	E	В
						· · · -			
		Ethylene	Dichlorid	e - 200 ppm	n. (Con	<u>t'd</u> .)			
R38495	1-2-46	8.2	13.2	12.6	12	87	1	-	_
2 - 1 / 2	2-21-46	7.06	13.0	13.45	14	84	2	-	_
	4-19-46	7.48	13.4	12.8	29	71	-		_
R38562	1-2-46	7.60	14.9	18.1	28	71	1	-	-
	2-21-46	8.03	15.5	20.35	18	77	-	1	-
R38565	1-2-46	8.8	13.9	19.6	21	77	2	-	_
	2-21-46	7.7	15.0	22.9	13	85	2	-	_
	4-19-46	8.87	14.2	13.1*	21	78	โ	_	_
		6.21	15.0	8.85	38	62	, T	-	-
	7-1-46	0.21	12.0	0.07	0ر	0z	-	-	-
		Tr	ichloroeth	ane - 100 p	. mag				
R38629	1346	5.51	15.2	17.55	14	86		-	-
	2-21-46	9 . 50*	15.4	22.00	16	83	1	-	-
	4-22-46	9.29	16.0	19.85	16	81	3	-	_
	4-22-40	/•~/	10.0	±/•.>)	10	01			
R38622	1-3-46	6.68	13.6	14.85	11	88	1	-	-
	2-21-46	6.18	14.9	16.6	15	85	-		-
	4-22-46	7.41	15.0	11.6	33	63	3	1	-
R38653	1-3-46	7.23	15.0	16.55	16	84	-	_	
1,000,0			14.8	11.3	10	88	- 1	-	-
	2–21–46	7.57	14.0	11.5	ΤT	00	T	-	-
R38740	1-3-46	6.76	14.3	27.7	11	87	2	-	-
	2-25-46	6.61	14.0	24.75	75	22	3	-	-
	~ ~ / + ~						-		
R38682	1-3-46	6.20	13.5	10.55	12	87	1	-	-
	2-21-46	3.64*	8.5	27.6*	19	74	7	-	-
	3-11-46	8.72	14.0	20.05	15	81	,		
R39854				25.75	19	80	4 1	-	-
	4-22-46	7.76	13.9	27.17	19	00	T	-	
R38525	1-3-46	5.94	14.0	12.3	12	85	3	_	-
	2-25-46	5.74	14.6	12.6	19	80	3 1	-	-
	4-22-46	7.93	13.9	10.3	11	86	3	-	-
	7-1-46	6.48	14.7	4.2*	25	75	-	_	-
	+ -				-	-			
R38505	1-3-36	7.49	14.1	19.2	15	85	-	-	-
	2-25-46	7.4	14.0	13.25	18	82	-	-	-
	4-22-46	8.24	14.0	17.05	20	78	2	-	
	7-1-46	7.92	14.2	9.35*	21	78	1		-
		DOW CONFID					Dogo	e 38 of 5 ⁻	4

•

.

DOW CONFIDENTIAL - Do not share without permission

Page 38 of 51

Table 10-20 Page 9.

Animal					<u> </u>		ferent			
Number	Date	RBC	Hbg	WBC	N	L	М	E	В	
			oroethane -		(Cont'd					
38576	1-3-46	7.45	13.9	14.65	13	85	2	-	-	
	2-25-46	6.98	16.5	17.25	11	88	1			
		-	-	-						
38568	1-3-46	6.91	15.0	13.45	16	83	l	-		
	2-25-46	6.39	15.1	19.6	13	86	1		-	
	4-22-46	7.17	14.1	16.45	24	75	ī	+=		
	7-2-46	9.11	15.8	11.95	18	80	ī	1		
		,	-20-	,		~~	-	-		
		<u>Te</u>	trachloroet	<u>hane – 20</u>	O ppm.					
38647	13-46	6.99	14.8	18.3	6	94	_	-	-	
50047	2-25-46	7.35	13.6	16.8	11	88	1		_	
	4-22-46	7.95	13.0	15.5	13	84	3	-	-	
	7-2-40 7-2-46	8.87	16.2	9.05			2			
	1-2-40	0.0/	10.2	9.05	45	53	٨	-	- 1	
38680	1-3-46	5.85	16.0	14.75	6	93	1	_	_	
	2-25-46	7.17	13.0	33.7*	14	86	-	_	-	
	4-22-46	9.87	15.9	13.3*	17	83	-	-	-	
	7-2-40 7-2-46	9.87 8.13	17.0	13.1		60	-	-	_	
	/-~40	0.13	17.0	19.1	40	60	-	-	-	
39855	3-11-46	6.87	14.0	13.6	10	85	5		_	
57077	4-22-46	9.38	17.0	19.05	16	83	í	_	_	
	7-2-46	9.59	18.0	16.85	29	70	i	_	-	
	/-2-40	7.07	TO*0	10.02	47	10	Ŧ	-	-	
R38704	1-3-46	8.00	14.1	10.00	15	84	1		_	
	2-25-46	7.60	13.2	16.8	30	68	2	_	_	
		,		2010	<i></i>		~			
38731	1-3-46	7.31	14.0	15.35	29	71	_	-	-	
	2-28-46	6.1	13.9	16.45	21	78	1	_	_	
	4-22-46	8.32	14.0	15.4	26	74	-	_	_	
	7-2-46	5.98	16.0	5.50*	32	67	1	_	_	
	/-2-40	2.90	10.0	J. JUA	76	07	Ŧ	-	-	
R38512	1-4-46	6.17	12.0	10.9	10	88	2	_	-	
	2-25-46	6.9	14.5	19.3*	22	76	$\tilde{2}$		_	
	~~~ <i>~</i> , <i>−</i> 40	<b>~•</b> /	• J	-/•/	*~~		E.			
R38502	1-3-46	6.76	13.8	16.7	12	88	-		_	
	2-25-46	7.88	13.1	12.35	19	78	3	-		
	4-22-46	8.13	13.8	15.65	īó	89	í	-	_	
	7-2-46	7.98	14.7	13.2	22	78	±		_	
	1-2-40	1.70	14•/	エノ・た	**	10	-	-	-	
R38515	1-3-46	6.00	13.4	12.65	29	71		-	-	
	2-25-46	6.09	13.0	16.1	15	84	1	_	_	
	e-ej-40	0.07		TO • T	<u> </u>	-4	*	-	_	
R38552	1 <b>-</b> 3-46	7.33	14.9	13.45	16	83	1			
	2-25-46	6.83	14.0	19.25	19	81	÷	-	_	
					22	78	-	-	-	
	4-22-46	8.42	16.0	6.85*	22	10	-	-	-	
R38594	1-3-46	4.83	14.0	9.7	14	86	-	_	_	
1.00.74	2-25-46	4.05 7.63*	14.2	13.1	10	90	_	_	_	
	K-KJ-40	7.007	14 e K	+ / • +	<b>+</b> U		_	-		

•

•

(Continued)

-

### Table 10-20 Page 10.

Animal							ferent		
Numb <u>er</u>	Date	RBC	Hbg	WBC	<u>N</u>	L	<u>M</u>	E	B
		7	-1		0				
		Prop	ylene Dich	<u>loride - 20</u>	• <u>mqq v</u>				
R38617	1-4-46	7.90	15.1	18.3	18	81	1	-	
-	2-25-46	7.59	15.0	19.15	21	78	1	-	-
	4-23-46	8.51	14.9	16.2	10	86	4	-	-
R38630	1-4-46	7.34	13.0	17.9	10	88	2	_	-
	2-25-46	8.38	15.1	17.5	11	88	1	-	-
	4-23-46	9.37	14.9	23.8	12	86	2	-	-
						95			
R38675	1-4-46	7.41	14.2	20.75	11	85	4	<del>.</del>	-
	2-25-46	7.59	16,1	17.55	17	83	-	-	-
R38679	1-4-46	6.67	14.0	14.05	16	82	2	-	-
	2-25-46	8.68	14.5	26.85	20	80	-	-	-
aadmaa	1 / 14	6.45	14.8	20.2	23	77	_	-	-
R38732	1-4-46 2-25 <b>-</b> 46	7.22	14.0	20.2	14	85	_	1	_
	2-29-40	1.2	14.	20019		37		-	
R38527	1-4-46	5.6	14.0	18.9	15	84	1	-	
	2-25-46	6.66	13.8	22.4	13	82	5	-	-
	4-22-46	8,86	15.0	19.75	13	86	1	-	-
38497	1-4-46	8.35	14.0	18.6	24	73	3	-	
2	2-25-46	7.10	14.0	16.45	20	78	2	-	_
	4-23-46	9.21	15.1	15.75	16	83	1	-	_
	7-2-46	11.31	16.6	7.45*	29	71	-	-	-
R38514	1-4-46	5.65	13.9	12.95	9	91	_	-	_
	2-25-46	6.99	13.5	35.55*	19	81			_
	4-22-46	9.38	16.0	17.35*	23	76	1	_	_
	7-2-46	7.82	14.1	10.6	27	69	2	2	_
				2010	~ '	0)	~	~	
R38550	1-4-46	4.40	16.0	19.4	12	88	-		
	2-25-46	6.24	15.1	14.6	12	88	-	-	-
	4-23-46	6.57	14.2	13.4	17	83		-	-
R38578	1-4-46	5.26	16.6	10.45	13	85	2	_	-
-	2-25-46	8.69*	14.9	19.45*	13	86	1	-	-
39775	3-11-46	8.41	15.0	12.65	15	84	٦		
W711)	4-23-46	9 <b>.</b> 16	15.0	21.85*	10	87	1 3	-	-
	7-2-46	8.57	15.0	9.45*	18	81 81	ر	ī	
	1-~-40	0.)(		7.47	ΞŪ	0T	-	<b>T</b>	-

• .

,

(Continued)

•

Table 10-20 Page 11.

Animal			<u> </u>		· · · · · · · · ·	ials			
Number	Date	RBC	Hbg	WBC	N	L	М	E	В
			Con	trols					
R <b>38658</b>	1-22-46 2-21-46 4-17-46	7.94 6.85 2.08*	13.9 14.7 5.6	25.5 24.5 33.85	24 7 19	71 90 76	5 3 5	- - -	- - -
R38620	1-4-46 2-20-46	6.58 5.25	14.5 15.0	17.25 18.2	10 16	90 82	-2	-	- -
R38625	1-4-46 2-20-46	5.15 7.65	13.1 14.0	9.85 16.15	23 11	77 88	ī	-	-
R38673	1-4-46 2-21-46	6.04 7.67	13.6 15.5	14.25 23.25	12 22	88 76	-2	- -	- -
R38711	1-4-46 2-21-46 4-17-46 7-2-46	5.69 7.53 5.49 9.26*	12.9 16.0 15.8 17.0	10.00 21.55* 15.8 7.65*	18 46 9 16	80 53 89 84	2 1 2 -	 - -	
R3 <b>8554</b>	1-4-46 2-20-46	7.78 6.95	14.0 13.9	13.95 20.35	9 13	91 86	- 1	-	-
R38563	1-4-46 2-20-46 4-17-46	8.26 7.85 8.62	14.9 14.3	12.45 24.9*	18 19	79 78	3 2	- 1	-
R38581	1-4-46 2-20-46 4-17-46 7-2-46	7.47 6.55 6.93 7-82	14.1 15.0 15.0 14.5	11.25 22.75* 15.9 7.05*	10 16 22 23	89 80 77 77	1 4 1 -		
R38585	1-4-46 2-21-46 4-17-46 7-2-46	6.66 7.13 7.99 8.42	14.1 15.1 14.8 16.9	15.00 13.95 19.05 12.2	7 13 20 36	91 84 80 64	2 3 -	-	
R38599	1-4-46 2-21-46 4-17-46 7-3-46	8.42 7.82 7.94 7.91	13.5 16.1 14.9 16.5	19.45 18.4 11.5 8.05	10 23 18 18	88 76 79 81	2 1 3 -	- - 1	

٠

.

.

#### Table 10-21

•

٠

.

### Growth, Fate, and Micropathology

(See abbreviations at end of table)

		Weight in	Gms.	· · · · · · · · · · · · · · · · · · ·		· ··· ···	
			Gain	Number of		Gross	
Rat			or	Alternate		Path-	
Number	Sex	Original	Loss	Exposures	Fate	ology	Micropathology
				Ethyl	idene	Dichlori	de
38660	М	128	+ 9	8	D	LUCH	K,LCW,LUC
38733	11	222	- 74	8	D	OM	K,Lcw,LU
38643	11	222	+ 16	12	D	LUCH	Kwz, LCW, LUC
38724	11	152	+ 22	18	D	LUCH	Kwz,LCW,LUC
38716	11	154	+134	28	D	LUt	KW,L,LU
38727	11	184	+146	48	D		K,L, LU
38695	11	210	+ 49	60	D	LUU	
38640	11	80	+145	62	D	LUCH	H,KW,LUC
38633	17	212	+ 57	65	D		A,H,Kw,LCW,LUc
38631	11	166	+255	75	S		· H,K,L,P,S,T
38697	11	122	+195	75	S		A,H,K,L,P,ST
38737	Ħ	175	+206	75	S		A,H,K,L,LU,P,S,T
39819	11	191	+165	45	S		A,H,K,L,P,SFG,T
39820	11	183	+137	45	S		A,H,K,L,LU,P,SFG,T
39821	tf	141	+177	45	S		A,H,K,L,LU,P,SFG,T
3 <b>98</b> 22	17	187	+167	45	S	LUCh	A,HB,K,L,LUx,P,SFG,T
Dog							
36000	11	10.74kgm.	+1.31	kgm.75	S	LUL	A,H,K,L,LUC,P,PA,SC,T,TH
20507	Ŀ.,	715	77	м	л	LUC	
38597	F` 11	145	- 7 + 4	7 12	D D	LUCP	KwZ,LCW,LUc
38561		153	,		D	LUCHt	K, LCW, LUC
39745	11	159	- 17	14			Kw, LcW, LUTX
38564	11	142	+ 26	21	S D	OM T TITE	K,L,LU
39752	tt -	168	0	21		LUU	
38543	11	120	+ 48	23	S	OM	A,H,K,L.LU,P
38494	11	135	+ 1	24	D	LUU	
38553		142	+ 4	24	D	OM	
38584	11 11	128	+ 72	26	D	LUH	A,H,K,LCW,LUC,P,S
38586	11	120	+ 72	28	D	LUH	
38537		160	+128	33	S	OM	A,H,K,L,LU,P,S
38589	f1	122	+ 34	34	D	LUCH	
38492	f1 11	142	+194	75 175	S	LUch	A, H, K, L, LU, P, S, T
38524		131	+ 85	75	S	Lf	A, H, K, L, LU, P, S
39744	f1	153	+ 77	45	S	OM,LUZ	A,H,K,L,LUCY,P,SFG
39748	†1 **	169	+ 67	45	S	Lf	A, H, K, L, LUC, P, SFG
39750	11 ••	168	+ 75	45	S		A, H, K, L, LUC, P, S
39751	11 11	186	+ 68	45	S		A, H, K, L, LUC, P, S
397 <b>78</b>		164	+ 77	45	S		A,H,K,L,LUC,P,SFG

K-001717-007

Table 10-21 Page 2.

<u></u>		Weight in	o Gma				· · · · · · · · · · · · · · · · · · ·
		Mergino II	Gain	Number of		Gross	
Rat			or	Alternate		Path-	
Number	Sex	Original	Loss	Exposures	Fate		Micropathology
						rachloride	D
				تحتيبة بتجب			
39824	М	196	- 26	4	D	LUCh	Kw,Lwy,LUC
38710	11	170	+ 5	7	D	LUC	Kw,LWY,LUC
39826	11	168	+ 34	18	D	Lj	A,H,K,LVWY,LU,S,T
38700	11	112	+ 83	20	D	LUH	Kz,LCW,LUC
39827	11	184	+ 6	23	D	LUU	Kw, LWY, LUCTW
38619	41	236	+ 10	24	D	LUCH	Kz,LCHW,LUC
38644	11	124	+ 22	26	D	LUCH, LA	KWZ, LWY, LUC
38672	11	104	+ 82	30	D	LUZ	
38690	11	168	+ 95	33	D	LUU	KWZ,LCW,LUC
38650	11	196	+ 50	41	D	LUC	KWZ, LCWy, LUC
38735	11	225	- 43	42	D	LUCH, LF	A, H, KWZ, LCW, LUC, P, Sg, TB
38666	11	118	+123	48	D	LUZ,LF	A,H,K, LCWy,LUC,P,S,T
38736	11	178	+ 90	55	D	LUU,LF	A, H, KWZ, LCHW, LUC, PZ, S, T
38725	11	112	+108	69	D		
38634	11	114	+182	75	S	LUCH, LF	A,H,K,Lcw,LUC,P,S,T
39828	ff	200	+108	45	S	LF	A, H, Kw, LVW, LU, P, S, T
Dog							
36011	" 1	4.69kgm.	+.31kgr	n. 75	S	Lp	H,KW,LWY,LUCG,P,SC,T,TH
39754	F	140	- 20	1	D	LUCH	KW, LCW, LUCw
38601	**	140	- 28	6	D	LUC	K, LWY, LUC
38500	11	147	- 41	18	D	LUZ	KWZ,LCW,LUC
38516	11	128	+ 70	33	S	OM	KeWy,LWY,LUC
38588	11	150	+ 30	37	D	LUU	K,LcWy,LUC
39753	11	135	+ 42	42	D	LUCHt	Kw, LVWY, LUCTX
38544	11	108	+ 32	45	D	LUCH, HKC	Kw,LCWy,LUC
38609	et Su	129	+ 54	47	D		KWZ,LCWy,LUC
38577	'n	140	+ 26	62	D		A,H,K,LCWy,LUC,P,S
38555	11	132	+ 38	69	D	LUCH,KC	H,Kz,Lcw,LUC,Pz,S
38506	11	155	+ 95	75	S	LUCH, LF	A,H,K, Lcw,LUc,P,S
38510	11	148	+116	75	S	LF,KC	A,H,K, Lcw,LU,P,Sg
38522	11	140	+145	75	S	LF,KC	A,H,K, Lcw,Sg
385 <b>3</b> 4	11	128	+ 94	75	S	LUt,Lf,KC	H,K,Lcw,LU,P,S
				·····	ahler	oethylene	
				<u>111</u>	<u>.cnror</u>	Decilyrene	
38618	М	136		2	D		Kw,Lcw,LUc
39830	TT .	181	+ 17	11	D	LUC	Kw,LCW,LUC
39833	Ħ	180	+ 16	12	D	LUU	KW,LCW,LUC
38734	11	218	+ 9	16	D	LUH	Kw,Lcw,LUC
38667	11-	136	+ 76	25	D	LUU	KWz,Lcw,LUC
38717	ff	129					isKEW, Lcw, LUCT Page 43 of 51
		,	-	,		•	

.

1

Table 10-21 Page 3.

• `

							· · · · · · · · · · · · · · · · · · ·
		Weight in				-	
			Gain	Number of		Gross	
Rat			or	Alternate		Path-	
Number	Sex	Original	Loss	Exposures	Fate	ology	Micropathology
38632	М	188	+ 84	75	S	LUT	A,H,K,L,LU,P,S,T
3864 <b>5</b>	41	196	+115	75	S		A,H,K,L,LU,P,S,T
38648	11	184	+168	75	S		A,H,K,L,LU,P,S,T
38651	11	163	+123	75	S		A,H,K,L,LUU,P,S,T
38696	11	158	+144	75	S		A,H,K,L,S,P,T
38701	11	232	+ 81	75	S	LUt	A,H,K,L,LUW,P,S,T
Dog							
36001	11	ll.Okgm.	-3.4kg	m. 75	S	LAjf	A,H,I,K,LY,LUc,P,S,T,TH
			_				
38523	F	150	- 26	6	D	LUC	K,Lcw,LUC
39 <b>759</b>	11	164	- 34	6	D	LUC	Kw,LCW,LUC
38598	11	144	- 18	12	D	LUC	
38509	11	140	0	34	D	LUCHT	KWz,Lcw,LUc
38600	11	132	+ 70	37	D	LUC	K, Lew, LUC
38535	11	131	+ 37	38	D	LUT	Kw,Lcw,LUc
38503	11	165	- 13	39	D	LUU	
38602	11	126	+ 2	44	D	LUCHt	K,Lcw,LUC
38529	11	148	+ 32	51	D	Doom	Ng How g Hoo
38551	H	126	+ 79	68	D	LUU	A,H,K,Lcw,LUC,Pz
38545	11	144	+ 16	75	D	LUCH	A,H,KWz,LW,LUC,P,Scg,T
	tt.					DOOL	
38547	11	141	+ 90	75	S		A,H,K,L,LU,P,S
38573		131	+103	75	S		A,H,K,L,LU,P,S
39758	11	160	+ 52	45	S		A,H,K,L,LU,P,Sf
		·		Tetrac	hloro	ethylene	
39 <b>835</b>	М	176	0	1	D	LUH	KW,Lc,LUC
39840	14		- 32		D	LUHT	Kw,LCW,LUTY
	11	134		4			
38646	"	182	- 12	5	D	LUH	K,LCW,LUC
38684	11	110	+ 24	5	D	LUCh	K,LCW,LUc
38662		130	+ 13	12	D	T TIT	
38706	11	140	- 16	15	D	LUH	KwZ,LCW,LUC
38714	11	122	- 28	16	D	LUTZ	K,LCW,LUC
39836	11	142	- 14	16	D		K, Lcw, LUCY
38649	11	185	+ 29	21	D	LUCH	Kw,LCW,LUC
38718	n	114	- 4	37	D	LUZ	KWZ,LCW,LUc
38694	11	132	+ 78	41	$\mathbb D$	LUCH	A,H,K,LCW,LUC,P,S,T
3 <b>8655</b>	11	162	+ 60	47	D	LUZT	A,K,LCW,LUC,PZ,S,T
39837	11	133	- 1	48	D	LUCHT	KW,LCW,LUC
38713	17	140	- 80	70	D	LUCHT	H,KwZ,LCW,LUC,S
28702	11	172	+ 38	75	S		H,K,L,LU,P,S
38705	11	150	+103	75	S		H,K,L,LU,P,S,T
39014	n	135	+108	69	ŝ		A,H,K,L,LU,S,T
398 <b>34</b>	11	174	+ 82	45	S	OM	A,H,K,L,LU,P,S,T
39838	11	152	+ 46	45	S		A,H,K,L,LU,P,S,T
170,00		<b>x</b> ) <	. 40	47	5		

•

4

(Continued)

*

Table 10-21 Page 4.

	* *	Weight i		N			
Pot			Gain	Number of		Gross	
Rat	0		or	Alternate	<b>.</b>	Path-	
Number	Sex	<u>Original</u>	Loss	Exposures	Fate		Micropathology
Dog				<u>Tetrachlo</u>	roeth	ylene (Cor	<u>nt'd.)</u>
36003	М	17.09kgm.	+.31kg	m. 75	S		A,H,K,L,LU,P,S,T,TH
38596	F	140	- 14	3 5	D	LUc	KwZ,LCW,LUc
38508	H	147	+ '7	5	D	LUCH	K,LCW,LUC
38532	11	146	+ 8	5	D	LUCH	K,LCW,LUC
38570	f1	149	+ 3	5	D	LUCH	K,LCW,LUC
38582	11	120	- 39	7	D	LUCH	K,LCW,LUC
39762	tt	112	- 18	7	D	LUZ	
38513	11	142	- 30	8	D	LUT	K,LCW,LUC
38608	Ħ	150	- 23	11	D	LUCh	K,LCW,LUC
39767	11	148	- 40	17	D	LUC	K,LC,LU
38496	H.	172	- 60	19	D	LUT	K,LCW,LUt
38605	11	125	+ 39	39	S	OM	A, H, K, Lc, LUc, P, S
38603	11	114	- 24	39	D	LUT	A, H, K, LCW, LUC
38569	11	126	+ 35	63	D	LUU	H,KwZ,LCW,LUC,PZ
38610	Ħ	126	+ 92	75	S		A, H, K, L, LU, P, S
39760	11	121	+ 74	45	S		A,H,K,L,LU,S
39761	11	138	+ 65	45	S	LUt	A,H,K,L,LUx,P,S
39763	11	136	+ 71	45	S		A,H,K,L,LU,P,S
39765	11	132	+ 72	45	S		A,H,K,L,LU,P,S
39766	11	165	+ 49	45	S		A,HB,K,L,LU,P,S
				Ethyl	ene D	<u>ichloride</u>	
38642	М	158	0	1	D		LW,LUC
38708	11	164	ŏ	ī	D		Kw, LCW, LUC
38719	11	133	ŏ	ī	D	• •	Kw,LCW,LUC
38723	11	122	ŏ	ī	Ď	• • • •	Kw,LCW,LUc
38726	11	138	ŏ	ī	D		Kw,LW,LUC
39019	11	120	- 12	2	D		KW,LW,LUC
39846	**	206	- 38	2	Ð		KW, LCW, LUC
38657	11	196	- 58		D	LUCH	
38739	11	161	- 46	4 10			KWZ,LCW,LUC
38635	11	101	+ 2		D		
_98 <b>47</b>	tt.	170	- 11	15	D		KWZ,LCW,LUC
38703		142	- 11 - 50	15	D		KW, LCW, LUC
38715	11	142 137		18	D	LUZ	KWZ,LCW,LUC
_8638	11	126	+ 47	19	D	LUU	Kw,LCW,LUC
398 <b>49</b>	n		+ 30	21	S	OM	K,Lw,LUC
298 <b>49</b> 29816		156	- 30	22	D	LUCH,SZ	KW, LCW, LUCt
	**	156	- 15	26	D	LUU	K,LCW,LUC
286 <b>83</b>		120	+ 4	26	D	LUC	K,Lw,LUC
<u>, 9016</u>	**	154	+164	72	S		A,H,K,L,LU,P,S,T
010 ود	- 11 	142	+162	60	S		K,L,LU
9844	tt	174	+130	45	S		A,H,K,L,LU,P,S,T

٠

.

Table 10-21 Page 5.

.

		Weight in					
				Number of		Gross	
at	-			Alternate	<u> </u>	Path-	
umber	Sex	Original	Loss	Exposures	Fate		Micropathology
				Ethyl	ene l	<u>)ichloride</u>	(Cont'd.)
9017	М	120	+116	72	S		A,H,K,L,LU,S,T
9018	11	150	+216	72	S		A,H,K,L,LU,P,S,T
9012	11	189	+229	69	S		K,L,LUC
9020	11	156	+178	72	S		А,Н,К,L,LU,Р, ,Т
9853 Dog	11	180	+ 72	45	S		A,H,K,L,LU,P,S,T
5002	, tt	17.74kgm.	+1.09k	gm. 75	S		A,H,KWSM,Lw,LUC,P,SCG,T,TH
9768	F	178	- 11	10	D	LUH,LZ	KWZ,LW
8491	tt	150	+ 16	21	S	OM	K,LW,LUC
3562	11	156	+ 56	32	D	LUU	K,LCW,LUC
3606	11	136	- 30	39	D	LUZ	
8533	11	124	+ 36	41	D	LUC,LZ	KWZ,LCW,LUC
3557	Ħ	129	+ 17	42	D	-	KTW, LW, LUC
3611	17	120	+ 64	44	D	LUchT	K, Lcw, LUT
3495	11	142	+ 37	53	D	LUCh	A,H,KWz,LW,LUC,PZ,S
3612	11	126	+ 46	54	D	LUCHt	A,H,K,LCW,PUC,P,S
3542	11	141	+ 3	58	D	LUCH	A,K,LĆW,LÚC,P,S
3499	tt	138	+ 92	75	S		A,H,K,L,LU,P,S
8565	11	156	+108	75	S		A,H,K,L,LU,S
8591	11	114	+ 90	75	S		A, H, K, L, LU, P, S
				Tric	hloro	ethane	
8720	М	170	0	1	D		KWZ,LGW,LUC
9854	11	126	+ 24	18	D	LUCH	Kwz,LCW,LUCTI
3740	11	166	+ 58	22	D	LUCH	KWZ,LGW,LUC
8682	tt	143	+112	37	D	LUU	KWZ, LCW, LUC
3653	Ħ	132	+184	43	D	LUCH	KW, LGW, LUC
3654	11	140	+128	48	D	LUCHZ	KWZ, LUCTY
3677	11	134	+ 49	48	D	LUCHZ	KWz,LCGW,LUCTY
8629	"	194	- 14	69	D	LUCH	
9021	11	167	+211	72	S		K,L,LU
3621	11	138	+108	73	D	OM,LUACH	A,H,LCW,LUC,SG,T
626	tt	156	+164	75	S	LUT	A,H,K,L,LUC,P,S,T
3663	11	137	+179	75	ŝ		A,H,K,L,LU,P,S,T
8570	11	120	+232	75	s		A,H,K,L,LU,P,S,T
Dog			~~				· · · · · · · · · · · · · · · · · · ·
7214	11	13.09kgm.	+1.21kg	m. 75	S	LAM	A,H,K,Lw,LUc,P,S,T,TH
	F	134	+.15		D.	LUU.	Kw, LCW, LUC

•

# Table 10-21 Page 6.

		Weight in		umber of		Gross	· · · · · · · · · · · · · · · · · · ·
Rat				lternate		Path-	
Number	Sex	Original		xposures	Fate		Micropathology
						ane (Cont	
38576	F	139	+ 53	34	D	LUC	KCw, LCW, LUC
38590	11	132	+ 48	51	D	LUCh	KCW, LCW, LUC
38622	11	168	- 22	53	D	LUCHZ	KWZ, LCGW, LUCTY
38566	11	134	+ 94	60	D	LUZ	
39770	11	146	- 6	66	D	LUU	A,H,KW,LCW,LUC,S
38493	11	100	+132	75	S		A,H,K,L,LU,P,S
38505	**	110	+132	75	S		A,H,K,L,LU,P,S
38525	11	176	+ 82	75	ŝ		A,H,K,L,LU,P,S
38556	ÿ	140	+110	75	S S	LUz	A, H, K, L, LU, P, S
38568	n	145	+149	75	S	404	A,H,K,L,LU,P,S
38593	11	133	+113	75	S		A, H, K, L, LU, P, S
	н			45	S		
39773		127	+ 77	40	5		A,H,K,L,LU,P,S
				Tet	rachl	oroethane	2
38668	М	144	+ 54	18	c	OM	Ķw,L,LUl
38689	141		+ 64	18	S D	LUZ	TOT 6 4 6 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10
	Ħ	144					
38678	11	191	+ 34	21	S	OM	Kw,Lw,LU
38728		122	+ 81	21	S	OM	K,L,LU
38704	"	206	+ 4	33	S	OM	K,Lw,LUy
38691	11	119	+ 37	39	D	LUZ	
38692	11	150	+ 26	62	D	LUCt	
38623	11	112	+208	75	s s		A,H,K,L,LU,P,S,T
38647	11	196	+ 72	75	S	LUZ	A,H,K,L,LU,P,S,T
38628	11	128	+168	75	S		A,H,K,L,LU,P,S,T
38680	11	126	+192	75	S		A, H, K, L, LU, P, S, T
38731	11	236	+104	75	S		A, H, K, L, LU, P, S, T
39855	11	164	+158	45	S		H,K,L,LUC,P,S,T
40458	11	218	+210	45	S		A,H,K,L,LU,P,S,T
40461	11	224	+ 60	45	S	•	A,H,K,L,LU,P,S,T
40462	14	166	+ 75	45	ŝ		A,H,K,L,LU,P,S,T
Dog					-		
36007	"	17.84kgm.	-3.34kg	m. 75	S		A,H,Kw,LW,LUC,P,TB,TH
38549	F	137	~ 13	17	D	LUH	KWZ,Lw,LUC
38517	11	142	+ 63	33	S	OM	K,L,LU
38512	11	160	+ 68	33	s	OM	K,LCW,LU
38594	11	155	+ 1	40	D	LUCt	KZ,LCW,LUy
39774	Ħ	156	+ 26	40	D	LUt	עטעפאז
38515	11	159	+ 12		D		
38552	11			44		LUCHt	KWZ,LCW,LUCY
	11	140	+ 82	48	D		A,H,K,L,LU,P,S
38604		143	- 7	51	D		
38526	11 ••	114	+ 46	57	D	LUCHZ	A,H,Kz,LCW,LUCY,P,SCFG
38546	11	122	+ 6	60	D	LUZ	
38567	11	148	- 7	64	D	LUU	A,HB,Kw,LCW,LU,P,Sc
						(Contin	nued)
						(001:02.	

٠

.

,

## Table 10-21 Page 7.

Number         Sex         Original         Loss         Exposures         Fate ology         Micropathology           Tetrachlorogethane (Cont'd.)           38502         F         136         + 94         75         S         A,H,K,L,LU,P,S           38615         "         136         + 94         75         S         A,H,K,L,LU,P,S           Propylene Dichloride           38721         M         116         - 36         D         LUZ         -           38727         ''         158         + 41         26         S         OM         KW,LW,LU           38675         ''         116         + 86         29         D         LUCHt         LCW,LUC           38679         ''         158         - 10         40         D         Lji         Kw,LCW,LUC           38637         ''         164         + 6         46         D         LUU         Kw,LCW,LUC           38647         ''         192         + 96         51         D         LUU         A,HK,K,LUC,P,S,T           38652         ''         100         +128         65         D         LUehTz         A,H,K,L,LU,P,S,S,T			Weight in										
Number         Sex         Original         Loss         Exposures         Fate ology         Micropathology           38502         F         136         +104         75         S         A,H,X,L,LU,P,S           38615         "         136         +94         75         S         A,H,K,L,LU,P,S           38615         "         136         +94         75         S         A,H,K,L,LU,P,S           38617         "         116         -36         3         D         LUZ         -           38722         "         158         +41         26         S< OM         KW,LW,LU           38679         "         116         +86         29         D         LUCHt         LCW,LUC           38679         "         158         -10         40         D         LU         Kw,LCW,LUC           38630         "         192         +96         51         D         LUU         Kw,LCW,LUC,PS,ST           38647         '         16         +128         65         D         LUU         A,H,K,L,LU,P,S,ST           38652         '         100         +128         65         D         Ku,LU,C,P,S,T <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>													
Tetrachloroethane (Cont'd.)38502F136+10475SA,H,K,L,LU,P,S38615"136+ 9475SA,H,K,L,LU,P,SPropylene Dichloride38721M116- 363DLUZ-38729"158+ 4126SOMKW,LW,LU38679"158+ 1040DLUCHtLCW,LUC38679"166+ 10443DLjKw,LCW,LUC38669"146+ 646DLUUKw,LCW,LUC,S,T38669"146+ 646DLUUA,HB,KX,LCW,LUC,S,T386630"192+ 9651DLUZ38652"100+12865DLUUA,HB,K,LU,CP,S,T38624"176+12475SK,L,LU,P,Seg,T39007"154+25472SH,K,L,LU,P,SG,T39007"154+25472SA,H,K,L,LU,P,S40460"220+12045SA,H,K,L,LU,P,SG,Tbog38573F124+ 8624D38595"125+ 8033SOMKWz,Lw,LU385961"136+ 1445DLUCH38597"124+ 94 <td>Rat</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Rat												
38502F $136$ $+104$ $75$ S $A, H, K, L, LU, P, S$ $38615$ " $136$ $+94$ $75$ S $A, H, K, L, LU, P, S$ Propylene Dichloride38721M $116$ $-36$ 3D $LUZ$ $ 38729$ " $158$ $+41$ $26$ SOMKW, LW, LU $38729$ " $116$ $+86$ $29$ D $LUCHt$ $LW, LU$ $38677$ " $116$ $+86$ $29$ D $LUCHt$ $LW, LUC$ $38677$ " $116$ $+104$ $43$ D $Lj$ $Kw, LCW, LUC$ $38669$ " $146$ $+6$ $46$ D $LUU$ $Kw, LCW, LUC, S, T$ $38630$ " $192$ $+96$ $51$ D $LUU$ $Kw, LCw, LUC, S, T$ $38647$ " $194$ $+19$ $54$ D $LUU$ $A, H, K, L, LU, P, Seg, T$ $38624$ " $176$ $+124$ $75$ S $K, L, LU, P, Seg, T$ $38627$ " $156$ $+214$ $75$ S $A, H, K, L, LU, SFG, T$ $39007$ " $154$ $+254$ $72$ S $A, H, K, L, LU, P, SFG, T$ $39007$ " $154$ $+254$ $75$ S $A, H, K, L, LU, P, SFG, T$ $39007$ " $154$ $+264$ D $100$ $100$ $38578$ F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOM <td>Number</td> <td>Sex</td> <td>Original</td> <td><u>Loss I</u></td> <td></td> <td></td> <td></td> <td></td>	Number	Sex	Original	<u>Loss I</u>									
33615"136+ 9475S $A, H, K, L, L, U, P, S$ Propylene Dichloride38721M116- 363DLUZ38729"158+ 4126SOMKW, LW, LU38675"116+ 8629DLUCHtLCW, LUC38679"158- 1040DLUHKWz, LCW38679"166+ 646DLUUKw, LCW, LUC38669"146+ 646DLUUKw, LCW, LUC, S, T38669"146+ 646DLUUA, HB, KWX, LCW, LUC, S, T38630"192+ 9651DLUUA, HB, KWX, LCW, LUC, S, T38652"100+ 12865DLUUUA, H, K, L, LW, LOC, P, S, T38653"156+ 21475SK, L, LU, P, Seg, T9007"156+ 21475SA, H, K, L, LU, P, SFG, T38738"112+ 11075SA, H, K, L, LU, P, S, TH38573F124+ 8624D96004"15.79 kgm. +5.46 kgm. 75SA, H, K, LW, LUC, P, S, TH38573F124+ 8624D38595"125+ 8033SOM38597T124+ 2447DLUCH38597"124+ 9448													
Propylene Dichloride38721M116- 363DLUZ38729"158+ 4126SOMKW,LW,LU38675"116+ 8629DLUCHtLCW,LUC38677"158- 1040DLUHKWz,LCW38732"116+ 10443DLjKw,LCW,LUC38630"192+ 9651DLUZKw,LCW,LUC,S,T38631"192+ 9651DLUUA,HE,KWZ,LCW,LUC,S,T38647"196+ 21475DLUUA,HK,Lw,LUC,P,S,T38652"100+ 12865DLUchTzA,H,K,Lw,LUC,P,S,T38654"156+ 21475SK,L,LU,P,Seg,T39007"154+ 25472SH,K,L,LU,P,Seg,T39007"154+ 25472SA,H,K,L,LU,P,SFG,T38738"112+ 11075SA,H,K,L,LU,P,SFG,T38595"125+ 8033SOMKWz,LW,LUC38595"125+ 8033SOMKWz,LW,LUC38591"136+ 1445DLUCHKW,LCW,LUCY38591"124+ 9448SOMK,L,LU38597"124+ 9448SOMK,L,LU38591"	38502		-										
38721       M       116 $-36$ 3       D       LUZ       -         38729       "       158 $+41$ 26       S       OM       KW,LW,LU         38679       "       116 $+86$ 29       D       LUCHt       LCW,LUC         38679       "       158 $-10$ $40$ D       LUH       KW,LW,LUC         38679       "       116 $+104$ $43$ D       Lj       Kw,LCW,LUC         38669       "       146 $+6$ $46$ D       LUU       Kw,LCW,LUC,S,T         38652       "       100 $+128$ $65$ D       LUU $A,H,K,L,W,LUC,P_2,S,T$ 38624       "       176 $+144$ $75$ D       LUU $A,H,K,L,W,LUC,P_2,S,T$ 38627       "       156 $+214$ $75$ S $K,L,LU,P,Seg,T$ 38738       "       112 $+110$ $75$ S $A,H,K,L,LU,P,SFG,T$ 38630       "       136 $+14$ $45$ D       LUCH       KZ,LCW,LUC         385578       F       124	38615	11	136	+ 94	75	S		A,H,K,L,LU,P,S					
38729" $158$ $+ 41$ $26$ SOMKW,LW,LU $38675$ " $116$ $+ 86$ $29$ DLUCHtLCW,LUC $38679$ " $158$ $- 10$ $40$ DLUHKW2,LCW $38732$ " $116$ $+ 104$ $43$ DLjKw,LCW,LUC $38669$ " $146$ $+ 6$ $46$ DLUUKw,LCW,LUCY $38669$ " $146$ $+ 6$ $46$ DLUUKw,LCW,LUCY $38667$ " $192$ $+ 96$ $51$ DLUZ $38652$ " $100$ $+ 128$ $65$ DLUchTz $A, H, KZ, LCw, LUC, Pz, S, T$ $38652$ " $100$ $+ 128$ $65$ DLUU $A, H, KZ, LCw, LUC, Pz, S, T$ $38657$ " $156$ $+ 214$ $75$ DLUU $A, H, K, L, LU, P, Scg, T$ $38738$ " $112$ $+ 110$ $75$ S $A, H, K, L, LU, P, SG, T$ $36004$ " $125$ $+ 254$ $72$ S $A, H, K, L, LU, P, SFG, T$ $Dog$ $36004$ " $125$ $+ 80$ $33$ SOMKW2, LW, LU $38578$ F $124$ $+ 86$ $24$ DLUCHKZ, LCW, LUCY, P, S, TH $38580$ " $136$ $+ 14$ $45$ DLUCHKZ, LCW, LUCY $38591$ " $124$ $+ 94$ $48$ SOMK, L, LU $38561$ " $124$ $+ 94$ $48$					Propy	lene	Dichlorid	<u>e</u>					
38729" $158$ $+ 41$ $26$ SOMKW,LW,LU $38675$ " $116$ $+ 86$ $29$ DLUCHtLCW,LUC $38679$ " $158$ $- 10$ $40$ DLUHKW2,LCW $38732$ " $116$ $+ 104$ $43$ DLjKw,LCW,LUC $38669$ " $146$ $+ 6$ $46$ DLUUKw,LCW,LUCY $38667$ " $192$ $+ 96$ $51$ DLUZ $38617$ " $194$ $+ 19$ $54$ DLUU $A,HB,KWX,LCw,LUC,PS,T$ $38637$ " $100$ $+ 128$ $65$ DLUU $A,HB,KLW,LUC,PS,T$ $38637$ " $156$ $+ 214$ $75$ DLUU $A,H,K,LW,LUC,PS,T$ $38637$ " $156$ $+ 214$ $75$ S $H,K,L,LU,P,Scg,T$ $38738$ " $112$ $+ 110$ $75$ S $A,H,K,L,LU,P,S$ $340460$ " $220$ $+ 120$ $45$ S $A,H,K,L,LU,P,S,TH$ $38578$ F $124$ $+ 86$ $24$ DLUCH $38578$ F $124$ $+ 86$ $24$ D $38580$ " $136$ $+ 14$ $45$ DLUCH $38595$ " $126$ $+ 80$ $33$ S $38596$ " $126$ $+ 94$ $48$ S $38597$ " $124$ $+ 94$ $48$ S $38596$ " $124$ $+ 94$ $48$ <td< td=""><td>38721</td><td>М</td><td>116</td><td>- 36</td><td>3</td><td>D</td><td>LUZ</td><td>-</td></td<>	38721	М	116	- 36	3	D	LUZ	-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38729	11	158			S	OM	KW,LW,LU					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38675	11	116	+ 86	2 <b>9</b>	D	LUCHt	LCW, LUC					
38669"146+6 $46$ DLUUKw,LCW,LUCY38630"192+9651DLUZ38630"194+1954DLUUA,HB,KWX,LCW,LUC,S,T38647"194+1954DLUUA,HB,KWX,LCW,LUC,S,T38652"100++1865DLUchTzA,H,K,L,UC,P,S,T38637"156++1475DLUUA,H,K,L,W,LUC,P,S,T38637"156++2472SH,K,L,LU,P,Scg,T39007"154++25472SA,H,K,L,LU,P,S38738"112+11075SA,H,K,L,LU,P,SFG,T $Dog$ 36004"15.79kgm. *5.46kgm.75SA,H,K,L,LU,P,S,TH38578F124+8624D38595"125+8033SOMKWz,LCW,LUCY38580"136+1445DLUCHKZ,LCW,LUCY38591"124-2447DLUCHKWz,LCW,LUCY38590"136+1453D38597"124+9448SOMK,L,LU38590"124-24<	38679	**	158		40	D	LUH	KWz,LCW					
38630" $192$ $+96$ $51$ DLUZ $38617$ " $194$ $+19$ $54$ DLUU $A, HB, KWX, LCw, LUC, S, T$ $38647$ " $100$ $+128$ $65$ DLUchTz $A, H, KZ, LCw, LUC, Pz, S, T$ $38647$ " $176$ $+124$ $75$ DLUU $A, H, K, Lw, LUC, P, S, T$ $38637$ " $156$ $+214$ $75$ SK, L, LU, P, Seg, T $39007$ " $154$ $+254$ $72$ SH, K, L, LU, P, Seg, T $39007$ " $154$ $+254$ $72$ SA, H, K, L, LU, P, Seg, T $39007$ " $154$ $+254$ $72$ SA, H, K, L, LU, P, Seg, T $39007$ " $154$ $+254$ $72$ SA, H, K, L, LU, P, Seg, T $39007$ " $154$ $+254$ $72$ SA, H, K, L, LU, P, SFG, T $30007$ " $152$ $+86$ $24$ D $39578$ F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOM $38595$ " $124$ $-24$ $47$ DLUCH $38511$ " $124$ $-24$ $47$ DLUCHZ $38527$ " $148$ $-3$ $58$ DLUCH $38527$ " $148$ $-3$ $58$ DLUCH $38527$ " $148$ $-3$ $58$ DLUCH $38527$ " $148$	38732	11	116	+104	43	D	Lj	Kw,LCW,LUC					
38617"194+ 1954DLUUA,HB,KWX,LCw,LUC,S,T38652"100+12865DLUchTzA,H,KZ,LCw,LUC,Pz,S,T38647"176+14475DLUUA,H,K,Lw,LUC,P,S,T38687"156+21475SK,L,LU,P,Seg,T39007"154+25472SH,K,L,LU,P,Seg,T38738"112+11075SA,H,K,L,LU,P,S40460"220+12045SA,H,K,L,LU,P,SFG,T $\frac{Dog}{36004}$ "15.79kgm. +5.46kgm.75SA,H,K,LW,LUC,P,S,TH38578F124+ 8624D38595"125+ 8033SOMKWz,Lw,LU38595"125+ 8033SOMKWz,LCW,LUCY38595"124- 2447DLUCHKZ,LCW,LUCY38490"124+ 9448SOMK,L,LU38511"124- 358DLUCH38527"148- 358DLUCHt38550"174+ 6065DLUtA,H,K,L,LU,P,S38514"168+ 8275SLUCpA,H,K,L,LU,P,S38514"152+ 8875SLUPA,H,K,L,LU,P,S38514"132+ 9075SLUTA,H,K,L,LU	38669	16						Kw,LCW,LUCY					
38652" $100$ $+128$ $65$ D $LUchTz$ $A,H,KZ,LCw,LUC,Pz,S,T$ $38624$ " $176$ $+144$ $75$ D $LUU$ $A,H,K,Lw,LUC,P,S,T$ $38637$ " $156$ $+214$ $75$ S $K,L,LU,P,Scg,T$ $39007$ " $154$ $+254$ $72$ S $H,K,L,LU,P,Scg,T$ $39007$ " $154$ $+254$ $72$ S $H,K,L,LU,P,Scg,T$ $38738$ " $112$ $+110$ $75$ S $A,H,K,L,U,P,SFG,T$ $Dog$ $A,H,K,L,U,P,SFG,T$ $36004$ " $15.79kgm.$ $+5.46kgm.$ $75$ S $A,H,K,LW,LUC,P,S,TH$ $38578$ F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOM $KWz,Lw,LU$ $38595$ " $126$ $+14$ $45$ D $LUCH$ $KZ,LCW,LUCY$ $38511$ " $124$ $-24$ $47$ D $LUCHZ$ $KW,LCW,LUCY$ $38490$ " $124$ $-94$ $48$ SOM $K,L,LU$ $38511$ " $124$ $-94$ $48$ SOM $K,L,LU$ $38527$ " $148$ $-3$ $58$ D $LUCHt$ $38550$ " $174$ $+60$ $65$ D $LUt$ $A,H,K,L,LU,P,S$ $38497$ " $168$ $+82$ $75$ S $LUcp$ $A,H,K,L,LU,P,S$ $38497$ " $168$ $+82$ <	38630	11	192	•	-								
$38624$ " $176$ $+144$ $75$ DLUU $A, H, K, L, LU, P, S, T$ $38687$ " $156$ $+214$ $75$ SK, L, LU, P, Seg, T $39007$ " $154$ $+254$ $72$ SH, K, L, LU, SFG, T $38738$ " $112$ $+110$ $75$ SA, H, K, L, LU, P, S $38738$ " $112$ $+110$ $75$ SA, H, K, L, LU, P, SFG, T $\underline{Dog}$ " $220$ $+120$ $45$ SA, H, K, L, LU, P, SFG, T $\underline{Dog}$ " $15.79 kgm. +5.46 kgm. 75$ SA, H, K, LW, LUC, P, S, TH $38578$ F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOM $38511$ " $124$ $+94$ $48$ SOM $38511$ " $124$ $+94$ $48$ SOM $386490$ " $124$ $+94$ $48$ SOM $38550$ " $174$ $60$ $65$ DLUCHt $38550$ " $174$ $40$ $65$ DLUCHt $38497$ " $168$ $+82$ $75$ SLUCp $38497$ " $168$ $+82$ $75$ SLUCp $38497$ " $168$ $+82$ $75$ SLUCp $38497$ " $168$ $+82$ $75$ SLUpp, S, S $38501$ " $148$ $+70$ $75$ S $A, H, K, L, LU, P, S$ <td< td=""><td>38617</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	38617	11											
38687" $156$ $+214$ $75$ SK,L,LU,P,Seg,T $39007$ " $154$ $+254$ $72$ S $H,K,L,LU,SFG,T$ $38738$ " $112$ $+110$ $75$ S $A,H,K,L,LU,P,S$ $40460$ " $220$ $+120$ $45$ S $A,H,K,L,LU,P,SFG,T$ $Dog$ $36004$ " $15.79$ kgm. $+5.46$ kgm. $75$ S $A,H,K,LW,LUC,P,S,TH$ $38578$ F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOMKWz,Lw,LU $38580$ " $136$ $+14$ $45$ DLUCHKZ,LCW,LUCY $38490$ " $124$ $+94$ $48$ SOMK,L,LU $38616$ " $135$ $+41$ $53$ D $-14$ ," $38527$ " $148$ $-3$ $58$ DLUCHt $38550$ " $174$ $+60$ $65$ DLUCH $38527$ " $148$ $+70$ $75$ S $LUCp$ $38514$ " $152$ $+88$ $75$ SLUp $A,H,K,L,LU,P,S$ $38571$ " $132$ $+90$ $75$ SLUT $A,H,K,L,LUC,P,S$	38652	**											
39007" $154$ $+254$ $72$ SH,K,L,L,U,F,S,T $38738$ " $112$ $+110$ $75$ SA,H,K,L,LU,P,S $40460$ " $220$ $+120$ $45$ SA,H,K,L,LU,P,SFG,T $Dog$ $36004$ " $15.79$ kgm. $+5.46$ kgm. $75$ SA,H,K,LW,LUC,P,S,TH $38573$ F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOMKWz,Lw,LU $38580$ " $136$ $+14$ $45$ DLUCHKZ,LCW,LUCY $38511$ " $124$ $-24$ $47$ DLUCHZKW,LCW,LUCY $38490$ " $124$ $+94$ $48$ SOMK,L,LU $38616$ " $135$ $+41$ $53$ D $$ from KWz,LCW $38527$ " $148$ $-3$ $58$ DLUCHt $38550$ " $174$ $+60$ $65$ DLUC Ht $38550$ " $174$ $+60$ $65$ DLUC Ht $385271$ " $168$ $+82$ $75$ SLUcp $38514$ " $152$ $+88$ $75$ SLUpA,H,K,L,LU,P,S $38571$ " $132$ $+90$ $75$ SLUTA,H,K,L,LUC,P,S	38624												
$38738$ "112+11075SA,H,K,L,LU,P,S $40460$ "220+12045SA,H,K,L,LU,P,SFG,T $\boxed{Dog}$ $36004$ "15.79kgm. +5.46kgm. 75SA,H,K,LW,LUC,P,S,TH $38578$ F124+ 8624D $38595$ "125+ 8033SOM $38580$ "136+ 1445DLUCH $38511$ "124- 2447DLUCHZ $38490$ "124+ 9448SOM $38527$ "148- 358DLUCHt $38550$ "174+ 6065DLUt $38591$ "168+ 8275SLUcp $38591$ "168+ 8275SLUcp $38591$ "168+ 8275SLUp $38591$ "168+ 8275SLUp $38591$ "168+ 8275SLUp $38591$ "168+ 7075SA,H,K,L,LU,P,S $38571$ "132+ 9075SLUTA,H,K,L,LUC,P,S	38687		-				ę -						
40460"220 $\pm 120$ 45SA,H,K,L,LU,P,SFG,T $\underline{Dog}$ "15.79kgm. $\pm 5.46kgm.$ 75SA,H,K,LW,LUC,P,S,TH $38578$ F124 $\pm 86$ 24D $38595$ "125 $\pm 80$ 33SOM $38580$ "136 $\pm 14$ 45D $38511$ "124 $- 24$ 47D $124$ $- 24$ 47DLUCHZ $38490$ "124 $+ 94$ 48 $38527$ "148 $- 3$ $38550$ "174 $+ 60$ 65DLUCHt $38497$ "168 $148$ $- 3$ 58DLUCHt $38551$ " $148$ $+ 70$ 75 $38514$ "152 $152$ $+ 88$ 75 $38571$ "132 $132$ $+ 90$ 75 $5$ LUT $A,H,K,L,LUC,P,S$	39007												
Dog 36004"15.79kgm. +5.46kgm. 75SA,H,K,LW,LUC,P,S,TH38578F124+ 8624D38595"125+ 8033SOMKWz,Lw,LU38580"136+ 1445DLUCHKZ,LCW,LUCY38511"124- 2447DLUCHZKW,LCW,LUCY38490"124+ 9448SOMK,L,LU38516"135+ 4153DKWz,LCW38550"174+ 6065DLUCHt38550"174+ 6065DLUt38591"168+ 8275SLUcp38501"148+ 7075SA,H,K,L,LU,P,S38514"152+ 8875SLUpA,H,K,L,LU,P,S38571"132+ 9075SLUTA,H,K,L,LUC,P,S	38738												
$36\overline{004}$ "15.79kgm. $\pm 5.46kgm.$ 75SA,H,K,LW,LUC,P,S,TH $38578$ F124 $\pm 86$ 24D $38595$ "125 $\pm 80$ 33SOMKWz,Lw,LU $38595$ "136 $\pm 14$ 45DLUCHKZ,LCW,LUCY $38580$ "136 $\pm 14$ 45DLUCHZKW,LCW,LUCY $38511$ "124 $-24$ 47DLUCHZKW,LCW,LUCY $38490$ "124 $+94$ 48SOMK,L,LU $38616$ "135 $\pm 41$ 53D $ \pm 5$ KWz,LCW $38527$ "148 $-$ 358DLUCHt $38550$ "174 $\pm 60$ 65DLUtA,H,K,L,LU,P,S $38497$ "168 $\pm 82$ 75SLUepA,H,K,L,LU,P,S $38501$ "148 $+70$ 75SA,H,K,L,LU,P,S $38514$ "152 $\pm 88$ 75SLUpA,H,K,L,LU,P,S $38571$ "132 $+90$ 75SLUTA,H,K,L,LUC,P,S		Ť1	220	+120	45	ន		A,H,K,L,LU,P,SFG,T					
38578F $124$ $+86$ $24$ D $38595$ " $125$ $+80$ $33$ SOMKWz,Lw,LU $38580$ " $136$ $+14$ $45$ DLUCHKZ,LCW,LUCY $38511$ " $124$ $-24$ $47$ DLUCHZKW,LCW,LUCY $38490$ " $124$ $+94$ $48$ SOMK,L,LU $38616$ " $135$ $+41$ $53$ DC $65$ KWz,LCW $38527$ " $148$ $-3$ $58$ DLUCHt $38550$ " $174$ $+60$ $65$ DLUtA,H,Kwz,LCWY,LUCY,P,S $38497$ " $168$ $+82$ $75$ SLUcpA,H,K,L,LU,P,S $38501$ " $148$ $+70$ $75$ SA,H,K,L,LU,P,S $38514$ " $152$ $+88$ $75$ SLUpA,H,K,L,LU,P,S $38571$ " $132$ $+90$ $75$ SLUTA,H,K,L,LUC,P,S						~		· · · · · · · · · · · · · · · · · · ·					
38595       "       125       + 80       33       S       OM       KWz,Lw,LU         38580       "       136       + 14       45       D       LUCH       KZ,LCW,LUCY         38511       "       124       - 24       47       D       LUCHZ       KW,LCW,LUCY         38490       "       124       + 94       48       S       OM       K,L,LU         38616       "       135       + 41       53       D       KWz,LCW         38527       "       148       -       3       58       D       LUCHt         38550       "       174       + 60       65       D       LUt       A,H,KWz,LCWY,LUCY,P,S         38497       "       168       + 82       75       S       LUcp       A,H,K,L,LU,P,S         38501       "       148       70       75       S       A,H,K,L,LU,P,S         38514       "       152       + 88       75       S       LUp       A,H,K,L,LUC,P,S         38571       "       132       + 90       75       S       LUT       A,H,K,L,LUC,P,S	36004	11	15.79kgm.	+5.46kg	gm. 75	S		A,H,K,LW,LUC,P,S,TH					
38580       "       136       + 14       45       D       LUCH       KZ,LCW,LUCY         38511       "       124       - 24       47       D       LUCHZ       KW,LCW,LUCY         38490       "       124       + 94       48       S       OM       K,L,LU         38616       "       135       + 41       53       D       LUCHZ       KWz,LCW         38527       "       148       -       3       58       D       LUCHt         38550       "       174       + 60       65       D       LUt       A,H,KWz,LCWY,LUCY,P,S         38497       "       168       + 82       75       S       LUcp       A,H,K,L,LU,P,S         38501       "       148       + 70       75       S       A,H,K,L,LU,P,S         38514       "       152       + 88       75       S       LUp       A,H,K,L,LUC,P,S         38571       "       132       + 90       75       S       LUT       A,H,K,L,LUC,P,S	38578	F	124	+ 86	24	D							
38511       "       124       - 24       47       D       LUCHZ       KW,LCW,LUCY         38490       "       124       + 94       48       S       OM       K,L,LU         38616       "       135       + 41       53       D       KWz,LCW         38527       "       148       -       3       58       D       LUCHt         38550       "       174       + 60       65       D       LUt       A,H,KWz,LCWY,LUCY,P,S         38497       "       168       + 82       75       S       LUcp       A,H,K,L,LU,P,S         38501       "       148       + 70       75       S       A,H,K,L,LU,P,S         38514       "       152       + 88       75       S       LUp       A,H,K,L,LUC,P,S         38571       "       132       + 90       75       S       LUT       A,H,K,L,LUC,P,S	38595	**	125		33	S		KWz,Lw,LU					
38490       124       +94       48       S       OM       K,L,LU         38616       135       +41       53       D       KWz,LCW         38527       148       -3       58       D       LUCHt         38550       174       +60       65       D       LUt       A,H,KWz,LCWY,LUCY,P,S         38497       168       +82       75       S       LUcp       A,H,K,L,LU,P,S         38501       148       +70       75       S       A,H,K,L,LU,P,S         38514       152       +88       75       S       LUp       A,H,K,L,LUC,P,S         38571       132       +90       75       S       LUT       A,H,K,L,LUC,P,S	38580	Ħ	136	,	45	D		KZ, LCW, LUCY					
38616       "       135       + 41       53       D       LUCH         38527       "       148       -       3       58       D       LUCHt         38550       "       174       + 60       65       D       LUC       A,H,KWz,LCWY,LUCY,P,S         38497       "       168       + 82       75       S       LUcp       A,H,K,L,LU,P,S         38501       "       148       + 70       75       S       A,H,K,L,LU,P,S         38514       "       152       + 88       75       S       LUp       A,H,K,L,LU,P,S         38571       "       132       + 90       75       S       LUP       A,H,K,L,LUC,P,S	38511	11	124	- 24	47 .		LUCHZ	KW,LCW,LUCY					
38527       "       148       -       3       58       D       LUCHt         38550       "       174       +       60       65       D       LUt       A,H,KWz,LCWY,LUCY,P,S         38497       "       168       +       82       75       S       LUcp       A,H,K,L,LU,P,S         38501       "       148       +       70       75       S       A,H,K,L,LU,P,S         38514       "       152       +       88       75       S       LUp       A,H,K,L,LU,P,S         38571       "       132       +       90       75       S       LUT       A,H,K,L,LUC,P,S	38490												
38550       "       174       + 60       65       D       LUt       A,H,KWz,LCWY,LUCY,P,S         38497       "       168       + 82       75       S       LUcp       A,H,K,L,LU,P,S         38501       "       148       + 70       75       S       A,H,K,L,LU,P,S         38514       "       152       + 88       75       S       LUp       A,H,K,L,LU,P,S         38571       "       132       + 90       75       S       LUT       A,H,K,L,LUC,P,S	38616							KWz,LCW					
88497 " 168 + 82 75 S LUcp A,H,K,L,LU,P,S 88501 " 148 + 70 75 S A,H,K,L,LU,P,S 88514 " 152 + 88 75 S LUp A,H,K,L,LU,P,S 88571 " 132 + 90 75 S LUT A,H,K,L,LUC,P,S	38527												
88501 " 148 + 70 75 S A,H,K,L,LU,P,S 88514 " 152 + 88 75 S LUp A,H,K,L,LU,P,S 88571 " 132 + 90 75 S LUT A,H,K,L,LUC,P,S	38550												
88514 " 152 + 88 75 S LUp A,H,K,L,LU,P,S 88571 " 132 + 90 75 S LUT A,H,K,L,LUC,P,S	38497						LUcp						
38571 " 132 + 90 75 S LUT A,H,K,L,LUĆ,P,S	38501		•										
	38514		-										
39775 " 160 + 72 45 S A,H,K,L,LU,P,SFG							LUT						
	39775	11	160	+ 72	45	S		A,H,K,L,LU,P,SFG					

٠

.

(Continued)

.

# Table 10-21 Page 8.

		Weight in		umber of		Gross	
Rat				lternate		Path-	
lumber	Sex	Original	Loss E	xposures	Fate	ology	Micropathology
					Cont	rol	
38627	М	164	- 10	6	D	LUC	
38636	17	116	- 44	6	D		
38730	11	136	- 34	10	D	LUZ	
41059	11	200	+ 81	18	S	OM	A,H,K,L,P,SFG,T
38722	11	142	+130	26	S	PH	KW,LCWy,LU
38625	11	176	+101	37	D	LUt	KZ,LCWy,LU
38620	11	212	+ 64	38	D	LUt	KZ,LCWy,LUT
38673	11	128	+ 57	38	D	LUCH	KW,LCWy,LUT
38658	11	108	+133	54	D	LUCH	A,H,L,LU,P,S,T
38688	11	144	+ 62	57	D	LUU	
38671	11	94	+126	67	D	LUCHt	A,H,KW,LW,LU,PZ,SCf
38693	11	140	+200	75	S		H,K,L,LU,P,SG,T
38711	11	166	+176	75	S	LUt	H,K,L,LU,P,SG,T
40343	H	192	+252	45	S		A,H,K,L,P,SFG,T
40464	Ħ	205	+203	45	S		A,H,K,L,P,SFG,T
40466	н	185	+205	45	S		
Dog			-				
36010	11	11.59kgm.	+3.66kg	m. 75	S		H,K,L,LU,P,PA,S,T,TH
38572	F	120	+ 20	22	D	LUZ	
38607	Ħ	160	+ 12	22	D	LUU	KW,LCWy,LUC
38554	11	142	+ 12	33	D	LUZ	,
38614	**	156	~ 6	47	D	LUCHZ	KW,LCWy,LUC
38531	11	120	+ 32	48	D	LUCH	Kw, LCWy, LUT
38575	11	112	+ 56	54	D	LUU	A,H,K,LCw,LU,Pz,Sf
38592	11	120	+ 52	54	D	LUCH	Kw, LCW, LUt
38563	11	165	+ 15	65	D	LUCH	A,H,Kw,LCw,LUT,PZ,Sf
38581	**	132	+108	75	S		A,H,K,L,LU,P,Sf
38585	"	136	+122	75	S		H,K,L,LU,P,S
38587	**	160	+ 72	75	S	LUt	A,H,K,L,LU,O,P,Sf
38599	#	155	+135	75	S		A, H, K, L, LU, P, Sf
39776		166	+ 78	45	S		A, H, K, L, P, S
39777	Ħ	162	+ 78	45	S		A,H,K,L,P,SFG
<u></u>			· · · · · · · · · · · · · · · · · · ·				

٠

,

.

#### ABBREVIATIONS

Fate

D = Died S = Sacrificed for examination

Gross Pathology (Initial capitals denote organ, followed by small letters for slight or capitals for major effect) K = KidneyKc = ", congestion L = LiverLa = ", acini prominent Lf = ", incipient cirrhosis Lj = ", jaundiced Lp = ", pale LU = LungLUa = ", adhering to thorax LUc = ", congestion LUh = ", hemorrhage LUp = ", petechial hemorrhage LUt = ", consolidation LUu = ", catarrhal pneumonia (mucois sheath on lungs) LUz = ", abscess S = SpleenSz = ", generalized infection Micropathology A = Adrenal, normal H = Heart, normalHb = ", blood clots in chambers K = Kidney, normal", desquamation of cells in convoluted tubules Km = ", casts in convoluted tubules Ks =", cloudy swelling of convoluted tubules ", cloudy swelling of loop tubules Kw =  $\mathbf{K}\mathbf{x} =$ ", nuclear degeneration of convoluted tubules Kz =L = Liver, normal", congestion
", free pigment
", thickening of interlobular septa
", Fat droplets or globules
", cloudy swelling
", fatty degeneration Lc =Lg =Lh =Lv =Lw =Ly =

ABBREVIATIONS (Cont'd.)

LU = Lung, normal LUc = ", congestion LUg = ", red blood cell leakage into bronchioles LUi = ", fibrin in alveoli LUL = ", enlarged lymph glands LUt = ", pleural consolidation LUu = ", catarrhal pneumonic involvement LUv = ", thickening of alveolar walls LUw = ", large lymphoid masses of tumors LUx = ", increase of lymphoid tissue around bronchioles LUy = ", sarcoma or tumor P = Pancreas, normal PA = Parathyroid, normal S = Spleen, normal&c = ", congestion
Sf = ", pigment phagocytized or deposited
Sg = ", excessive pigment T = Testis, normalTb = ", scant sperm TH = Thyroid, normal