The Dow Chemical Company Study ID: 045056 ACL #: 2004-103

Page 1 of 2

Dose Confirmation and Homogeneity ANALYTICAL REPORT NUMBER: 2004-103

Stu	ďν	num	her:

041056

Study Title:

1,1,2-Trichloroethane: Drinking Water in Rats

File number:

K-002519-011

Project #:

60183 Task/rep: 256-1

Project / Sample Description (optional):

1,1,2-Trichloroethane was mixed in municipal water

Test material(s):

1,1,2-Trichloroethane

Test material lot #: RL10019301

Report recipient(s):

Amanda Andrus

Analysis request date:

7/8/2004

Date submittor prepared samples:

07/08/2004

Number of samples or estimate:

4

Date samples prepared for analysis:

07/09/2004

Analysis date:

07/09/2004 4

Number of samples analyzed: Analysis method:

GC/ECD

Method reference:

AL #2004-123

Results:		-	Relative		
	Target	Observed	Standard		Percent
Sample	conc.	conc.	deviation		of target
ID_	mg/ml	mg/ml	mg/ml	<u>n</u>	conc.
Control	0.00	<llq< td=""><td>NA</td><td>1</td><td>NA</td></llq<>	NA	1	NA
50.0 mg/L	0.0500	0.0278	4.93	6	55.6%
1000 mg/L	1.00	0.850	NA	1	85.0%
3000 mg/L	3.00	2.45	2.93	6	81.7%
				·	
<llq =="" below="" lower<="" td=""><td>er limit of quantitation o</td><td>f 0.0200</td><td>mg/ml</td><td>NA = ne</td><td>ot applicable</td></llq>	er limit of quantitation o	f 0.02 0 0	mg/ml	NA = ne	ot applicable

Analyst	Jehlie Beutl 06-15-09
QAU	
Approval	pnoducted infeccondance with applicable GLR's (QAU signature required if study run outside of TERC)
,	
	DOW CONFIDENTIAL - Do not share without permission

The Dow Chemical Company Study ID: 045056 ACL #: 2004-103

Page 1 of 2

Dose Confirmation and Homogeneity ANALYTICAL REPORT NUMBER: 2004-103

Study number: 041056

Study Title: 1,1,2-Trichloroethane: Drinking Water in Rats

File number: K-002519-011 Project #: 60183 Task/rep: 256-1

Project / Sample Description (optional):

1,1,2-Trichloroethane was mixed in municipal water

Test material(s): 1,1,2-Trichloroethane

Test material lot #: RL10019301

Report recipient(s): Amanda Andrus

Analysis request date: 7/8/2004

Date submittor prepared samples: 07/08/2004

Number of samples or estimate: 4

Date samples prepared for analysis: 07/09/2004

Analysis date: 07/09/2004

Number of samples analyzed: 4
Analysis method: GC/ECD
Method reference: AL #2004-123

		Relative		
Target	Observed	Standard		Percent
conc.	conc.	deviation		of target
mg/ml	mg/ml	mg/ml	n	conc.
0.00	<llq< td=""><td>NA</td><td>1</td><td>NA</td></llq<>	NA	1	NA
0.0500	0.0278	4.93	6	55.6%
1.00	0.850	NA	1	85.0%
3.00	2.45	2.93	6	81.7%
		1		
	conc. mg/ml 0.00 0.0500 1.00 3.00	conc. conc. mg/ml mg/ml 0.00 <llq< td=""> 0.0500 0.0278 1.00 0.850</llq<>	Target conc. mg/ml mg/ml mg/ml mg/ml 0.00	Target conc. mg/ml Observed conc. mg/ml Standard deviation mg/ml n 0.00 <llq< td=""> NA 1 0.0500 0.0278 4.93 6 1.00 0.850 NA 1 3.00 2.45 2.93 6</llq<>

<LLQ = below lower limit of quantitation of 0.0200 mg/ml NA = not applicable</p>

AnalystDebbie Beuthin 06-15-05
QAU <i>n/a_</i>
work conducted in accordance with applicable GLP's (QAU signature required if study run outside of TERC
ApprovalKathy Brzak 06-15-05

Comments:

The control samples were diluted too much causing the LLQ for this analysis to be too high. In order to report the 50.0 mg/L samples, the LLQ will be set at 0.0200 mg/ml.

Results:			Mean			
Sample ID	Sampling location	Observed conc. (%w/w)	Observed conc. (%w/w)	Standard deviation (%w/w)	Relative standard deviation	n
50 mg/L	Тор	0.0255				
(0.0500 mg/ml)	Тор	0.0273				
	Middle	0.0277				
	Middle	0.0283				
	Bottom	0.0293				
	Bottom	0.0289	0.0278	0.00137	4.93%	6
3000 mg/L	Тор	2.35				
(3.00 mg/ml)	Тор	2.45				
	Middle	2.57				
	Middle	2.47				
	Bottom	2.46				
	Bottom	2.43	2.45	0.0718	2.93%	6

Detailed description of sampling process:

The 50.0 mg/L and 3000 mg/L dose levels were sampled from the top, middle, and bottom to analyze for homogeneity. The data recorded on page 1 represents an average for these samples at that dose level. The individual results are above. Graphic of sampling locations:

