1,3-Butadiene, Styrene and Lymphohematopoietic Cancers Among North American Synthetic Rubber Polymer Workers: Exposure-Response Analyses

Nalini Sathiakumar, M.D., Dr.P.H.¹ Bolanle Bolaji, M.D., M.P.H.¹ Ilene Brill, M.P.H.¹ Ligong Chen, Ph.D¹ Meghan Tipre, Dr.P.H.² Mark Leader, B.F.A.¹ Tarun Arora, M.S.¹ Elizabeth Delzell, Sc.D.¹

¹ Department of Epidemiology, University of Alabama at Birmingham, Birmingham, USA ² Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, USA

Corresponding Author

Nalini Sathiakumar, MD, DrPH Professor Department of Epidemiology University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294 Phone: 001-205-934-3719 Email: nalini@uab.edu

Word count: 3,493

ABSTRACT

Objective – To evaluate exposure-response between 1,3-butadiene, styrene and lymphohematopoietic cancers in an updated cohort of workers at six North American plants that made synthetic rubber polymers.

Methods – Employees were followed from 1943 through 2009 to determine mortality outcomes. Cox regression analyses estimated rate ratios (RRs) and 95% confidence intervals (CIs) by quartile of cumulative exposure to butadiene or styrene, measured in parts per million-years (ppm-years), and exposure-response trends for all leukemia, lymphoid leukemia, myeloid leukemia, acute myeloid leukemia, non-Hodgkin lymphoma, multiple myeloma and all B-cell malignancies.

Results – Among 21,087 workers, adjusted RRs for butadiene and all leukemia (132 deaths) rose with increasing exposure, with an RR of 2.53 (95% CI=1.37 to 4.67) in the highest exposure quartile (\geq 363.64 ppm-years), and the exposure-response trend was statistically significant for all leukemia (p=0.014) and for lymphoid leukemia (52 deaths, p=0.007). Styrene exposure-response trends for all leukemia and lymphoid leukemia were less consistent than those for butadiene. Cumulative exposures to butadiene and styrene were not associated consistently with myeloid leukemias or the B-cell malignancies, non-Hodgkin lymphoma and multiple myeloma.

Conclusions – We confirmed a positive exposure-response relationship between butadiene and all leukemia among workers, most of whom had co-exposure to styrene. Results supported an association between butadiene and lymphoid leukemia, but not myeloid leukemia, and provided little evidence of any association of butadiene or styrene exposures with major subtypes of B-cell malignancies other than lymphoid leukemia, including non-Hodgkin lymphoma and multiple myeloma.

ii

Key words: Leukemia, rubber, occupational health-

INTRODUCTION

Synthetic rubber polymer manufacturing began in the United States (US) and Canada in the early 1940s. Operations at the plants included in the present study have been described in detail previously.¹ Styrene-butadiene rubber (SBR), a copolymer of 1,3-butadiene and styrene, initially was the main type of synthetic rubber produced. At all of the plants, SBR production areas included polymerization, coagulation and finishing, with tank farm, laboratory, maintenance, warehouse and utilities support operations. Workers at the plants were exposed potentially to butadiene and styrene monomers and other chemicals. Monomer exposure potential varied by work area, type of job and time period. Exposure levels were relatively high in the 1940s and 1950s and declined thereafter due to changes in production, work practices and engineering controls. The International Agency for Research on Cancer (IARC),^{2,3} the US National Toxicology Program⁴ and other agencies have classified butadiene as a human carcinogen causing lymphohematopoietic cancer (LHC), especially leukemia. In 2019, The US Environmental Protection Agency listed butadiene as a high-priority for risk evaluation.⁵ IARC has classified styrene as probably carcinogenic to humans (Group 2A), based on limited evidence of carcinogenicity in humans and sufficient evidence in experimental animals.⁶

This paper describes internal analyses of the exposure-response relation between cumulative exposure to butadiene and styrene and mortality from LHCs in the largest cohort of synthetic rubber polymer workers, adding to two previous papers that presented preliminary exposure-response analyses of all leukemia, non-Hodgkin lymphoma (NHL) and multiple myeloma.^{7,8} New aspects of this paper include analyses by quartile of cumulative exposure to monomers for women and men combined, with beta coefficients (β) for the slope of the exposure-response curve and corresponding 95% confidence intervals (CIs); results pertaining to

B-cell malignancies; results for acute myeloid leukemia (AML), reported to be associated with styrene exposure⁵; results for each monomer and leukemia, stratified by exposure to the other monomer; and results of analyses using lagged monomer exposure data. The present analyses provide quantitative data on exposure-response trends that could be useful for risk assessments by regulatory agencies.

METHODS

Overview of study design and cohort data

Sathiakumar et al.⁸ described in detail the methods used to update the cohort study of mortality among workers employed at eight North American synthetic rubber polymer plants, with follow-up extended through 2009. The update included 17,924 men employed for at least one year and 4,861 women employed for at least one day before 1 January 1992. Turnover among male employees in the first year of employment at the plants was large. The one-year duration of employment criterion was imposed on the large male cohort to maximize informativeness. A similar restriction was deemed unnecessary for the smaller female cohort.

Quantitative butadiene and styrene monomer exposure estimates previously were developed for six of the eight plants by investigators who were blinded to disease outcomes.⁹ All analyses were restricted to 21,087 employees who had worked only at these six plants.

Work histories and monomer exposure estimates were available through the end of 1991. We did not obtain post-1991 job histories for 4,079 workers who were actively employed at the end of 1991. In their last 1991 job, 46% were exposed to monomers, but their exposures were relatively low (median values, 1.1 parts per million (ppm) for butadiene and 0.4 ppm for styrene). Exposure estimation entailed identifying for each plant-specific work area/job combination its component tasks and documenting historical changes in those tasks; calculating

plant-, work area/job- and time-specific average exposure indices (8-hour time-weighted average concentration in ppm) and compiling these into job-exposure matrices; and linking the time- and work area/job-specific exposure estimates in the job-exposure matrices with each employee's work history to obtain cumulative exposure estimates as of each day of follow-up.

Updated vital status information through 2009 was available for 99% of the cohort.⁸ Data on underlying and contributing causes of death came from death certificates, the US National Death Index and the Canadian Mortality Data Base of Statistics Canada. In a prior update, we attempted to obtain medical records of men whose death certificate mentioned any type of LHC.¹⁰ Medical records were retrieved for 86% of leukemia, 84% of multiple myeloma cases and confirmed the diagnoses of 100% leukemia and multiple myeloma and 96% of NHL cases with records. We did not obtain any additional medical records for the current update. Causes of death were determined without knowledge of monomer exposure status.

Monomer exposure variables

No new exposure estimates were developed for the present analysis. Exposure variables were time-dependent butadiene and styrene cumulative ppm-years. Analyses evaluated unlagged cumulative ppm-years and cumulative ppm-years lagged by 10 or 20 years to allow for potential latency. We did not analyze other exposure variables previously studied,¹¹ including number of high-intensity tasks (HITs), average ppm and ppm-years below and above a threshold, all of which were highly correlated with ppm-years (e.g., Spearman rank correlation coefficient = 0.89 for butadiene ppm-years and HITs).

Outcomes

Outcomes were all leukemia, lymphoid leukemia, myeloid leukemia, AML, NHL, multiple myeloma and all B-cell malignancies, including lymphoid leukemia, NHL and multiple myeloma.¹² The B-cell malignancy cases may have included a few T-cell neoplasms, which are thought to comprise 10-15% of NHL and lymphoid leukemia. For each LHC category, events included any decedent with the condition as the underlying or a contributing cause of death or with a medical record indicating that the condition was present.

Statistical analysis

Follow-up began for male workers on their date of accruing one year of employment or on the earliest date when complete plant records were available, whichever was later, and for female workers on their hire date or on the earliest date when complete plant records were available, whichever was later.⁸ For all workers, follow-up ended on the earliest of their death date, their loss-to-follow-up date or 31 December 2009.

Analyses of the relation between monomer exposure and LHC mortality used multivariable Cox regression methods to estimate LHC hazard ratios and exposure-response trends within the cohort of workers, without reference to an external comparison population. These "internal" Cox regression analyses provided maximum partial likelihood estimates of disease-specific hazard ratios, interpreted as rate ratios (RRs), and 95% CIs for each quartile of ppm-years of monomer exposure compared to no exposure, with quartiles specified according to the exposure distribution of cases with each form of LHC. Additional Cox regression analyses estimated beta coefficients (β) and 95% CIs for trends in exposure-response using butadiene or styrene ppm-years. For all leukemia, we further described the exposure-response curve with restricted cubic spline (RCS) Cox regression models, fitted to all exposure data and to the

trimmed data, with five knots corresponding to the 5, 27.5, 50, 72.5, and 95 percentile boundaries among the exposed. Also, for all leukemia, we analyzed butadiene exposure-response separately in the following two strata of styrene exposure: lower styrene exposure, defined as below the median value of 27 styrene ppm-years among leukemia decedents; and higher styrene exposure, defined as exposure at or above the median value. We also analyzed styrene exposureresponse, stratified by lower (below the median value, 121 ppm-years) versus higher (\geq 121 ppm-years) butadiene exposure.

All analyses used age as of each person-day of follow-up as the time scale and treated monomer ppm-years as time-dependent. Our main analyses assessed exposure-response trends using all person-day records, and models included as covariates, age at hire, calendar year of hire, sex, race, plant and payroll status (ever hourly-paid or always salaried). Salaried employees mainly held supervisory or managerial positions, while hourly employees typically worked directly and regularly with manufacturing operations and had higher potential exposure to monomers. Payroll status also was associated with socioeconomic factors.

We conducted several series of sensitivity analyses. One of these excluded person-day records having zero cumulative exposure, in order to eliminate the possibility that any observed exposure-response trend was due to differences in uncontrolled factors between unexposed and exposed person-time.¹³

To investigate the influence of data at extreme exposure values, additional sensitivity analyses estimated exposure-response trends using "trimmed" data that excluded all unexposed person-time and all person-time with ppm-years values above the 95th percentile of the exposure distribution of leukemia decedents (for analyses of all leukemias, lymphoid leukemia, myeloid leukemia and AML) or of B-cell malignancy decedents (for analyses of NHL, multiple myeloma

and all B-cell malignancies). Several considerations prompted these analyses. Cohort studies in other industry settings have reported that exposure-response curves tend to diminish at higher exposure levels.¹⁴ Two of our earlier studies of male synthetic rubber polymer workers found stronger exposure-response trends for butadiene and leukemia in analyses that excluded exposures above the 95th percentile¹¹ or categorized butadiene into deciles.⁷ Both of the latter procedures can reduce the impact of exposure outliers. In addition, an investigation at the largest study plant, performed to validate our butadiene exposure estimates, found greater misclassification for jobs entailing higher exposures than for jobs with lower exposures.¹⁵

Additional sensitivity analyses used "reduced" models that contained fewer covariates. The goal of the reduced models was to preserve the control of confounding, while providing more precise results. Thus, we examined models containing all possible subsets of covariates and selected a reduced model on the basis of having: (a) a monomer exposure parameter estimate within 5% of that obtained in the corresponding full model and (b) the fewest covariates.

Preliminary models evaluated possible differences in monomer exposure-LHC associations between women and men. Those analyses found no statistically significant sexmonomer exposure interaction and are not described further.

We used the SAS® version 9.4 Cox proportional hazard model procedure PHREG for the Cox regression analyses. We used the Akaike information criterion (AIC) to compare the statistical fit of reduced versus full models.¹⁶

The Institutional Review Board of the University of Alabama at Birmingham reviewed and approved the study protocol.

RESULTS

Of the 21,087 workers in the cohort, 14,004 (66%) were classified as ever exposed to butadiene, and 15,422 (73%) were ever exposed to styrene (Table 1). Cumulative exposure to monomers was right-skewed: overall, exposed workers had median and mean values of 48 and 187, respectively, for butadiene ppm-years and of 11 and 38, respectively, for styrene ppm-years. Monomer exposure was higher among men than among women and also varied by plant, payroll status, race and period of hire. The cohort had a median of 8.3 years of employment at the end of 1991. At the end of the follow-up, the median time since hire was 40 years, the median age was 69 years, and 46% of the cohort was deceased.

Total numbers of decedents with an outcome event were 132 for all leukemia, 52 for lymphoid leukemia, 67 for myeloid leukemia, 41 for AML, 110 for NHL, 60 for multiple myeloma and 213 for B-cell malignancy. Butadiene and styrene ppm-years were strongly correlated, with Spearman correlation coefficients ranging from 0.81 for NHL decedents to 0.87 for all leukemia and lymphoid leukemia decedents. Supplemental Table S1 shows decedents with each outcome, cross-classified by quartiles of butadiene and styrene ppm-years.

All leukemia

For butadiene, RCS analyses (Figure 1a and 1b and Supplemental Figure S1a) indicated that the adjusted RR for all leukemia increased in an approximately linear fashion at exposures below about 1,000 ppm-years, with attenuation of the curve at higher exposures. Analyses by quartile of ppm-years also indicated that adjusted RRs rose with increasing exposure, with an RR of 2.53 (95% CI=1.37 to 4.67) in the highest exposure category (\geq 363.64 ppm-years) (Table 2). Using untrimmed butadiene ppm-years, the exposure-response trend was statistically significant, regardless of the inclusion of unexposed person-time (including unexposed: β =2.55x10⁻⁴, 95%

CI=(0.52 to 4.57)x10⁻⁴, trend p=0.014) (excluding unexposed: β =2.50x10⁻⁴, 95% CI=(0.27 to 4.73)x10⁻⁴, trend p=0.028). Trimming to restrict data to ppm-years >0 and ≤95th percentile (1,144 ppm-years) of all leukemia decedents yielded a somewhat stronger exposure-response trend for butadiene (β =9.94x10⁻⁴, 95% CI=(1.88 to 18.00)x10⁻⁴, trend p=0.016). This result was consistent with RRs from the analysis by exposure quartile. For example, the beta coefficient obtained from the trimmed data, evaluated at the mean (1,156.83 ppm-years) or median (725.08 ppm-years) value of exposure in quartile 4, yielded RRs of 3.16 and 2.06, respectively, as compared the RR of 2.53 from the analysis by quartile. In contrast, the beta coefficient from the analysis of untrimmed butadiene data, evaluated at the same mean and median ppm-years, yielded RRs of 1.34 and 1.20, respectively.

For styrene, RCS results (Figure 2a and 2b and Supplemental Figure S2a) indicated a positive exposure-response curve, with attenuation at higher exposures. Other analyses (Table 2) yielded results similar to those for butadiene ppm-years, but those results were not statistically significant.

Analyses of each monomer, stratified by lower versus higher exposure to the other monomer, found that the butadiene exposure-response association was evident only in the category of higher styrene exposure (β =2.89x10⁻⁴, 95% CI=(0.41 to 5.36)x10⁻⁴, trend p=0.022) (Table 2). Styrene exposure-response was not observed in either category of butadiene exposure.

Lymphoid and myeloid leukemia

For lymphoid leukemia (Table 3), the pattern of RRs by quartile of butadiene ppm-years was irregular, with RRs of 2.61 (95% CI=1.02 to 6.67) and 1.95 (95% CI=0.76 to 5.03) in the third (213.43-<376.31 ppm-years) and fourth (\geq 376.31 ppm-years) quartiles, respectively; exposure-response trends were statistically significant (including unexposed: β =3.81x10⁻⁴, 95%

CI=(1.05 to 6.58)x10⁻⁴, trend p=0.007; excluding unexposed: β =4.78x10⁻⁴, 95% CI=(1.34 to 8.23)x10⁻⁴, trend p=0.007). For all myeloid leukemia and AML, the RR for each butadiene exposure quartile was elevated but statistically imprecise, and none of the exposure-response trends was significant. Analysis of trimmed exposure data yielded a statistically significant exposure-response trend for butadiene and lymphoid leukemia (β =15.40x10⁻⁴, 95% CI=(4.19 to 26.53)x10⁻⁴, trend p=0.007) but not for all myeloid leukemia or AML.

For styrene, analyses by quartile of ppm-years yielded results similar to those for butadiene ppm-years for lymphoid leukemia, all myeloid leukemia and AML (Table 3), but the only statistically significant RR was that for AML in the third exposure quartile. The only statistically significant exposure-response trend was that for lymphoid leukemia, with the inclusion of the unexposed (trend p=0.046).

NHL, multiple myeloma and B-cell malignancy

For butadiene and NHL (Table 3), no exposure-response was detected in analyses of exposure quartile or trends using untrimmed butadiene ppm-years. However, trimming to restrict data to ppm-years >0 and \leq 95th percentile (1,083 ppm-years) yielded a trend p-value of 0.002. No statistically significant butadiene exposure-response was found for multiple myeloma. For butadiene and all B-cell malignancies combined, the trend was statistically significant (p=0.002) only in analyses of trimmed exposure data. Styrene did not appear to be associated with NHL, multiple myeloma or all B-cell malignancy.

Other results

Analyses that lagged cumulative exposure by 10 or 20 years (Table 4) found that for all leukemia and lymphoid leukemia, butadiene exposure-response beta coefficients were similar regardless of the exposure lag applied. For all leukemia, trends were not statistically significant

for styrene exposure lagged 10 or 20 years. For lymphoid leukemia, only the trend for styrene lagged 10 years approached statistical significance. No trends were detected for lagged butadiene or styrene exposure and other LHCs.

Seventy-eight percent of reduced models yielded exposure parameter estimates that were within 5% of those in full models, and all were within 10% (Supplemental Tables S2-S5). Use of the reduced models did not identify any additional statistically significant results.

DISCUSSION

The present cohort comprises the largest butadiene-exposed group studied to date and includes the only large group of butadiene-exposed women. The update⁸ on which the current analyses were based substantially augmented information from our previous studies of male^{1,17} and female¹⁸ synthetic rubber polymer workers.

Leukemia

Internal Cox regression analyses of all leukemia found a statistically significant exposure-response trend for butadiene but not for styrene. Analyses of major subtypes of leukemia indicated that for lymphoid leukemia a trend of increasing risk with increasing cumulative exposure to butadiene was present, with evidence of a similar pattern for styrene that, however, was not statistically significant in most analyses. For all myeloid leukemia and AML a positive exposure-response trend was not evident for either monomer. Restricting data to exposed person-time did not substantively alter these results. For all leukemias and lymphoid leukemia, the butadiene trends were three to four times stronger when data were restricted to ppm-years >0 and \leq 95th percentile (1,144 ppm-years). Alternative explanations for this pattern include biological irrelevance of higher exposures, exposure misclassification, depletion of the pool of susceptible people, and other possible reasons.¹⁴ Lagging exposure had little effect on

results for leukemias or other outcomes, as exposure diminished over calendar time,⁹ more than 90% of the LHC cases died 20 years or more after hire, and no exposure was recorded after 1991.

With regard to butadiene and leukemia, the results of the present study are consistent with those reported earlier by other investigators¹⁹⁻²² and us^{1,7,8,10,11,17,18,23,24} in supporting a positive association in the synthetic rubber polymer industry. In contrast, investigations of relatively small cohorts of butadiene monomer production workers, who were exposed to butadiene but not to styrene, have reported results for leukemia that were null or weakly positive.²⁵⁻²⁸

With regard to styrene, increased risks of LHC, particularly leukemia and lymphoma, have been reported among styrene-exposed workers in both synthetic rubber polymer and reinforced plastic industries.⁶ Reinforced plastics industry workers were exposed to styrene concentrations at higher levels than were typically found in the synthetic rubber industry and were not exposed to butadiene. Positive exposure-response relationships between styrene exposure and leukemia were reported in an older multinational European study of reinforced plastics workers²⁹ but not in a recent reanalysis of that study.³⁰ A study of mortality among workers in the reinforced plastics boatbuilding industry reported an association between several indices of exposure to styrene and leukemia.³¹⁻³³ However, studies of several other cohorts of reinforced plastics workers found little evidence of an association between styrene and overall leukemia.³⁴⁻³⁷

With regard to exposure to butadiene or styrene and cell-type specific leukemias, data from other studies are limited.⁶ Christensen et al.³⁶ reported a positive exposure-response trend for a styrene cumulative exposure score and AML. Collins et al.³⁵ found no statistically

significant exposure-response trend among workers employed in the US reinforced plastics and composite industry.

NHL, multiple myeloma and B-cell malignancy

We found little evidence of any association between cumulative exposure to butadiene or styrene and NHL or multiple myeloma. These results are consistent with our previous analyses.^{7,8} The positive exposure-response for butadiene and all B-cell malignancies combined, seen only in analyses using trimmed exposure data, may have reflected the association between butadiene and lymphoid leukemia.

Several studies have assessed mortality from NHL or subtypes of NHL in three cohorts of butadiene monomer production workers exposed to butadiene but not to styrene.²⁵⁻²⁸ The observed number of NHL deaths exceeded the expected number in each study, but all results were based on small numbers.

An investigation that included many of the subjects in our study reported a positive association between styrene and NHL.²¹ The reanalysis of the European reinforced plastics cohort reported an association between mean level of exposure to styrene and NHL but found no association with cumulative exposure to styrene.³⁰ In contrast, updated studies of the reinforced plastics industry did not find a clear excess of NHL, overall or in subgroups with higher styrene exposure.^{31,32,34-36,38}

Matanoski et al.²¹ reported that multiple myeloma was associated with butadiene in a study that included most of the subjects in our male cohort, in contrast to our analyses by cumulative exposure, which provided no support for an association with butadiene or styrene. Divine and Hartman²⁵ reported slightly more than expected deaths from multiple myeloma

among butadiene production workers, but data on multiple myeloma were sparse and internally inconsistent.

Strengths and limitations

Study strengths included the long follow-up period, the use of objective procedures to classify workers according to monomer exposure and cause of death, the inclusion of female employees and the use of sensitivity analyses to facilitate interpretation of results. Potential misclassification of monomer exposure remains a concern. Previous investigations have validated the butadiene exposure estimates¹⁵ and assessed the impact of exposure misclassification on the exposure-response relation between butadiene and leukemia.^{1,39} However, sensitivity analyses to assess the potential impact of monomer exposure uncertainties would strengthen the data if used for risk assessment.

Other limitations include lack of information on lifestyle factors and the use of mortality, rather than incidence, data to ascertain LHCs. Mortality data are not optimal for cancers with relatively long survival including certain leukemias and B-cell malignancies. Although our results provided little support for the hypothesis that styrene causes LHC, the styrene concentrations experienced by this cohort were relatively low, as compared to the exposures of reinforced plastics industry workers.³⁵ We performed multiple comparisons, and it is possible that the observed associations occurred by chance.

Conclusions

This study confirmed a positive exposure-response relationship between butadiene and all leukemia and supports the classification of butadiene as a human carcinogen. Results supported an association between butadiene and lymphoid leukemia, but not myeloid leukemia. Evidence of an independent causal association between styrene and leukemia remained less convincing.

The study found little evidence that butadiene or styrene exposures were associated with major subtypes of B-cell malignancy other than lymphoid leukemia, including NHL and multiple myeloma.

Acknowledgements: We are grateful to the late James McGraw of the International Institute of Synthetic Rubber Producers for his effective coordination of many sponsor-investigator interactions since the inception of the original study in 1991. Maurizio Macaluso and Rodney Larson carried out exposure estimation in previous investigations.

Funding: International Institute of Synthetic Rubber Producers, American Chemistry Council (Olefins Panel) and Styrene Information and Research Center. The sponsors were given an opportunity to provide comments on a draft of this paper. However, the contract between the University of Alabama at Birmingham and the sponsors stipulated that the academic investigators should independently carry out the design, conduct and reporting of the study. Accordingly, the authors made all decisions about the contents of this paper.

Institution and Ethics approval and informed consent: The Institutional Review Board of the University of Alabama at Birmingham reviewed and approved the study protocol.

Disclosure (Authors): The Authors declare no conflict of interests.

Disclaimer: None

1. What is already known about this subject?

Workers in the synthetic rubber industry are exposed to butadiene and styrene. Our previous research on the largest cohort of synthetic rubber industry workers indicated that male workers

had an excess of leukemia that was likely to have been due to butadiene or butadiene plus styrene and other chemicals. The International Agency for Research on Cancer (IARC) and other agencies have classified butadiene as a human carcinogen causing lymphohematopoietic cancer, especially leukemia, and classified styrene as probably carcinogenic to humans.

2. What are the new findings?

The study confirmed a positive exposure-response relationship between butadiene and all leukemia among workers with co-exposure to styrene, supporting the IARC classification of butadiene as a known human carcinogen. Results supported an association between butadiene and lymphoid leukemia, but not myeloid leukemia. There was less support for an independent causal association between styrene and leukemia.

3. How might this impact on policy or clinical practice in the foreseeable future?

In 2019, The US Environmental Protection Agency included butadiene in its list of 20 substances designated as high-priority for risk re-evaluation. Thus, butadiene will move through the process required by Toxic Substances Control Act (TSCA) to evaluate any unreasonable risk it may present to human health or the environment. The results will inform the management of this chemical under TSCA.

REFERENCES

- 1. Delzell E, Sathiakumar N, Graff J, et al. An updated study of mortality among North American synthetic rubber industry workers. *Res Health Eff Inst* 2006;132:1-65.
- International Agency for Research on Cancer (IARC). 1,3-Butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2008:97.
- International Agency for Research on Cancer (IARC). Chemical agents and related occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2012:100F.
- National Toxicology Program (NTP). 14th report on Carcinogens. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health services. 2016.
- Environmental Protection Agency (EPA). High-Priority Substance Designations Under the Toxic Substances Control Act (TSCA) and Initiation of Risk Evaluation on High-Priority Substances; Notice of Availability.

https://www.federalregister.gov/documents/2019/12/30/2019-28225/high-prioritysubstance-designations-under-the-toxic-substances-control-act-tsca-and-initiation-of (accessed 16 October 2020).

 International Agency for Research on Cancer (IARC). Styrene, styrene-7,8-oxide, and quinoline. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2019:121.

- Sathiakumar N, Brill I, Leader M, et al. 1,3-Butadiene, styrene and lymphohematopoietic cancer among male synthetic rubber industry workers-preliminary exposure-response analyses. *Chem Biol Interact* 2015;241:40-49.
- 8. Sathiakumar N, Tipre M, Leader M, et al. Mortality among men and women in the North American synthetic rubber industry, 1943 to 2009. *J Occup Environ Med* 2019;61:887-897.
- Macaluso M, Larson R, Lynch J, et al. Historical estimation of exposure to 1,3-butadiene, styrene, and dimethyldithiocarbamate among synthetic rubber workers. *J Occup Environ Hyg* 2004;1:371-390.
- Graff JJ, Sathiakumar N, Macaluso M, et al. Chemical exposures in the synthetic rubber industry and lymphohematopoietic cancer mortality. *J Occup Environ Med* 2005;47:916-932.
- 11. Cheng H, Sathiakumar N, Graff J, et al. 1,3-Butadiene and leukemia among synthetic rubber industry workers: exposure-response relationships. *Chem Biol Interact* 2007;166:15-24.
- 12. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. *Blood* 2016;127:2375-2390.
- Greenland S. Analysis of polytomous exposures and outcomes. In Rothman K, Greenland S, Lash T, eds. *Modern Epidemiology*. Philadelphia, PA: Lippincott Williams & Wilkins 2008: 303-327.
- Stayner L, Steenland K, Dosemeci M, et al. Attenuation of exposure-response curves in occupational cohort studies at high exposure levels. *Scand J Work Environ Health* 2003;29:317–324.
- 15. Sathiakumar N, Delzell E, Cheng H, et al. Validation of 1,3-butadiene exposure estimates for workers at a synthetic rubber plant. *Chem Biol Interact* 2007;166:29-43.

- Portet S. A primer on model selection using the Akaike Information Criterion. *Infect Dis* Model 2020;5:111-128.
- 17. Sathiakumar N, Graff J, Macaluso M, et al. An updated study of mortality among North American synthetic rubber industry workers. *Occup Environ Med* 2005;62:822-829.
- Sathiakumar N, Delzell E. A follow-up study of mortality among women in the North American synthetic rubber industry. *J Occup Environ Med* 2009;51:1314-1325.
- 19. Santos-Burgoa C, Matanoski GM, Zeger S, Schwartz L. Lymphohematopoietic cancer in styrene-butadiene polymerization workers. *Am J Epidemiol* 1992;136:843-854.
- 20. Matanoski GM, Santos-Burgoa C, Schwartz L. Mortality of a cohort of workers in the styrene-butadiene polymer manufacturing industry (1943-1982). *Environ Health Perspect* 1990;86:107-117.
- 21. Matanoski G, Elliott E, Tao X, et al. Lymphohematopoietic cancers and butadiene and styrene exposure in synthetic rubber manufacture. *Ann N Y Acad Sci* 1997;837:157-169.
- 22. Meinhardt TJ, Lemen RA, Crandall MS, Young RJ. Environmental epidemiologic investigation of the styrene-butadiene rubber industry. Mortality patterns with discussion of the hematopoietic and lymphatic malignancies. *Scand J Work Environ Health* 1982;8:250-259.
- 23. Delzell E, Macaluso M, Sathiakumar N, et al. Leukemia and exposure to 1,3-butadiene, styrene and dimethyldithiocarbamate among workers in the synthetic rubber industry. *Chem Biol Interact* 2001;135-136:515-534.
- 24. Sathiakumar N, Delzell E, Hovinga M, et al. Mortality from cancer and other causes of death among synthetic rubber workers. *Occup Environ Med* 1998;55:230-235.

- 25. Divine BJ, Hartman CM. A cohort mortality study among workers at a 1,3 butadiene facility. *Chem Biol Interact* 2001;135-136:535-553.
- 26. Tsai SP, Wendt JK, Ransdell JD. A mortality, morbidity, and hematology study of petrochemical employees potentially exposed to 1,3-butadiene monomer. *Chem Biol Interact* 2001;135-136:555-567.
- 27. Ward EM, Fajen JM, Ruder AM, et al. Mortality study of workers in 1,3-butadiene production units identified from a chemical workers cohort. *Environ Health Perspect* 1995;103:598-603.
- 28. Ward EM, Fajen JM, Ruder AM, et al. Mortality study of workers employed in 1,3butadiene production units identified from a large chemical workers cohort. *Toxicology* 1996;113:157-168.
- 29. Kogevinas M, Ferro G, Saracci R, et al. Cancer mortality in an international cohort of workers exposed to styrene. *IARC Sci Publ* 1993;127:289-300.
- 30. Loomis D, Guha N, Kogevinas M, et al. Cancer mortality in an international cohort of reinforced plastics workers exposed to styrene: a reanalysis. *Occup Environ Med* 2019;76:157-162.
- 31. Ruder AM, Meyers AR, Bertke SJ. Mortality among styrene-exposed workers in the reinforced plastic boatbuilding industry. *Occup Environ Med* 2016;73:97-102.
- 32. Bertke SJ, Yiin JH, Daniels RD. Cancer mortality update with an exposure response analysis among styrene-exposed workers in the reinforced plastics boatbuilding industry. *Am J Ind Med* 2018;61:566-571.
- 33. Daniels RD, Bertke SJ. Exposure-response assessment of cancer mortality in styreneexposed boatbuilders. *Occup Environ Med* 2020;77:706-712.

- 34. Coggon D, Ntani G, Harris EC, et al. Risk of cancer in workers exposed to styrene at eight British companies making glass-reinforced plastics. *Occup Environ Med* 2015;72:165-170.
- 35. Collins JJ, Bodner KM, Bus JS. Cancer mortality of workers exposed to styrene in the U.S. Reinforced plastics and composite industry. *Epidemiology* 2013;24:195-203.
- 36. Christensen MS, Hansen J, Ramlau-Hansen CH, et al. Cancer incidence in workers exposed to styrene in the Danish-reinforced plastics industry, 1968-2012. *Epidemiology* 2017;28:300-310.
- Collins JJ, Delzell E. A systematic review of epidemiologic studies of styrene and cancer. *Crit Rev Toxicol* 2018;48:443-470.
- 38. Christensen MS, Vestergaard JM, d'Amore F, et al. Styrene exposure and risk of lymphohematopoietic malignancies in 73,036 reinforced plastics workers. *Epidemiology* 2018;29:342-351.
- 39. Graff JJ, Sathiakumar N, Macaluso M, et al. The effect of uncertainty in exposure estimation on the exposure-response relation between 1,3-butadiene and leukemia. *Int J Environ Res Public Health* 2009;6:2436-2455.

Group		Butadiene	e ppm-years			Styrene	e ppm-years	
(total number in group)	N (%)‡	Range	Median (IQR)	Mean (SD)	N (%)	Range	Median (IQR)	Mean (SD
Total cohort (21,087)	14,004 (66)	>0.00-9264	48 (11-167)	187 (517)	15,422 (73)	>0.00-1618	11 (2.8-36)	38 (98)
Sex	, , ,			~ /	, , ,		· · · ·	
Male (16,579)	12,814 (77)	>0.00-9264	54 (13-178)	197 (537)	14,006 (84)	>0.00-1618	13 (3.4-38)	40 (101)
Female (4,508)	1,190 (26)	>0.00-1980	8.0 (1.6-45)	76 (184)	1,416 (31)	>0.00-380	1.8 (0.3-11)	19 (48)
Plant, location	· · · · ·		× ,		· · · ·		· · · ·	
1, Kentucky (1,563)	1,144 (73)	>0.00-1499	75 (15-245)	195 (280)	1,171 (75)	0.01-477	20 (5.8-48)	38 (53)
2, Louisiana (2,463)	1,815 (74)	0.05-4185	72 (20-230)	251 (502)	1,782 (72)	>0.00-1469	16 (4.6-57)	71 (169)
3, Louisiana (2,849)	1,524 (53)	0.01-9264	73 (15-320)	483 (1267)	2,092 (73)	>0.00-1618	13 (3.7-48)	65 (178)
4, Texas (2,929)	1,690 (58)	>0.00-2114	38 (10-134)	132 (239)	2,227 (76)	>0.00-516	5.9 (1.7-22)	21 (40)
5, Ontario (7,044)	4,936 (70)	>0.00-5141	43 (8.3-143)	139 (282)	4,846 (69)	>0.00-442	12 (2.4-36)	33 (54)
6, Texas (4,239)	2,895 (68)	0.02-1575	32 (8.6-120)	102 (174)	3,304 (78)	>0.00-368	10 (2.5-29)	23 (35)
Ever hourly	, ()				()			- ()
Yes (15,109)	11,876 (79)	>0.00-9264	65 (16-203)	216 (556)	13,406 (89)	>0.00-1618	14 (3.6-42)	43 (104)
No (5,978)	2,128 (36)	>0.00-916	7.4 (1.7-23)	24 (59)	2,016 (34)	>0.00-310	2.5 (0.5-8.1)	7.8 (16)
Race	, - ()			()	,		(
White (18,674)	12,273 (66)	>0.00-5141	44 (10-149)	139 (268)	13,297 (71)	>0.00-681	10 (2.5-32)	27 (46)
Black (2,413)	1,731 (72)	0.01-9264	105 (18-368)	526 (1236)	2,125 (88)	0.01-1618	24 (5.5-87)	105 (225)
Hire year					, - ()		(,	
1943-1949 (5,404)	3,600 (67)	>0.00-9264	77 (20-253)	257 (650)	3,938 (73)	0.01-1618	13 (3.8-48)	50 (125)
1950-1959 (5,613)	4,005 (71)	>0.00-9063	97 (30-266)	260 (617)	4,279 (76)	0.02-1462	25 (6.4-56)	55 (117)
1960-1969 (4,333)	2,871 (66)	>0.00-7102	42 (11-130)	134 (334)	3,065 (71)	>0.00-1105	13 (3.3-34)	30 (63)
>=1970 (5,737)	3,528 (62)	>0.00-4516	12 (3.0-41)	75 (287)	4,140 (72)	>0.00-697	3.8 (0.9-13)	16 (51)
All decedents (9,665)	6,914 (72)	>0.00-9264	79 (21-245)	245 (607)	7,481 (77)	>0.00-1618	17 (4.4-49)	50 (119)
All leukemia (132)	103 (78)	1.92-7741	121 (34-364)	367 (873)	109 (83)	1.09-1203	27 (8.4-61)	62 (158)
Lymphoid leukemia (52)	39 (75)	1.92-7741	225 (45-425)	542 (1303)	42 (81)	1.65-1203	29 (8.6-69)	90 (243)
Myeloid leukemia (67)	53 (79)	5.03-2010	70 (26-230)	238 (425)	56 (84)	1.09-341	21 (5.4-49)	39 (57)
AML* (41)	32 (78)	5.03-2010	62 (20-188)	158 (351)	35 (85)	1.09-341	20 (5.2-36)	31 (58)
B-cell malignancy [†] (213)	148 (69)	>0.00-7741	125 (29-373)	334 (756)	163 (77)	0.09-1203	21 (4.6-62)	64 (157)
NHL (110)	76 (69)	>0.00-1496	121 (19-335)	234 (302)	86 (78)	0.09-231	24 (6.0-60)	41 (49)
Multiple myeloma (60)	40 (67)	>0.00-2398	111 (34-395)	314 (527)	43 (72)	0.21-840	15 (2.8-78)	82 (177)

*Abbreviations: AML, acute myeloid leukemia; NHL, non-Hodgkin lymphoma. †Included lymphoid leukemia, non-Hodgkin lymphoma and multiple myeloma. ‡Number of exposed employees (% of total number in each group).

	Butadiene					Styrene		
Model*	Ν	RR	95% CI	N	RR	95% CI		
Quartile [†]								
Unexposed	29	1.0	ref	23	1.0	ref		
1	26	1.04	0.60 to 1.83	27	1.12	0.61 to 2.07		
2	26	1.37	0.76 to 2.46	27	1.12	0.59 to 2.11		
3	25	1.60	0.87 to 2.94	28	1.79	0.93 to 3.45		
4	26	2.53	1.37 to 4.67	27	1.96	1.00 to 3.82		
Trend:								
All person-time: β [95% CI],	2.55	10^{-4} [(0.5	52 to 4.57) $x10^{-4}$],	1.04	1.04×10^{-3} [(-0.26 to 2.33) $\times 10^{-3}$],			
trend p-value, AIC, N [‡]	p=0.0	p=0.014, AIC=2384, N=132		p=0	p=0.116, AIC=2386, N=132			
Exposed person-time:	2.50×10^{-4} [(0.27 to 4.73) $\times 10^{-4}$],		0.84	0.84×10^{-3} [(-0.51 to 2.20) $\times 10^{-3}$],				
β [95% CI],	p=0.028, AIC=1786, N=103		p=0.	p=0.220, AIC=1912, N=109				
trend p-value, AIC, N								
Exposed person-time $\leq 95^{\text{th}}$	9.94×10^{-4} [(1.88 to 18.00) x10 ⁻⁴],		4.05	x10 ⁻³ [(-	1.19 to 9.30) $x10^{-3}$],			
percentile [§] : β [95% CI],	p=0.016, AIC=1673, N=97		p=0.	130, AIC	=1795, N=103			
trend p-value, AIC, N	•			•				
Stratified [¶] :								
Styrene <27.00 ppm-years	1.34x	10 ⁻⁴ [(-2	0.94 to 23.61) $x10^{-4}$],					
			=1340, N=77					
Styrene ≥27.00 ppm-years			38 to 5.34) $\times 10^{-4}$],					
	p=0.0)24, AIC=	=870, N=55					
Butadiene <121.28 ppm-				-7.2	6x10 ⁻⁴ [(-120.19 to 105.67) x10 ⁻⁴]		
years				p=0.	900, AIC	=1415, N=80		
Butadiene ≥121.28 ppm-				4.17	x10 ⁻⁴ [(-	12.45 to 20.78) $x10^{-4}$],		
years				p=0.	623, AIC	2=803, N=52		

Table 2 Exposure-response analyses of butadiene or styrene ppm-years and leukemia: number (N) of cases, adjusted rate ratio (RR) with 95% confidence interval (CI) by exposure quartile, beta-coefficient (β) with 95% CI and trend p-value

*All models used attained age as of each day of follow-up as the time scale. Covariates were age at hire, year of hire, race, sex, plant and ever hourly status, except as follows: for the model of butadiene within the stratum \geq 27.00 styrene ppm-years, the data were restricted to men due to the lack of events among women; for the model of styrene within the stratum \geq 121.28 butadiene ppm-years, the data were restricted to ever-hourly men due to the lack of events among female and never hourly workers.

[†]Quartile (Q) cutpoints were at the following values of ppm-years:

- butadiene: Q2, 34.00; Q3, 121.28; Q4, 363.64, maximum=7,741.41
- styrene: Q2, 5.76; Q3, 27.00; Q4, 60.53, maximum=1,203.21.

‡AIC, Akaike information criterion; N, number of cases included in the model.

§95th percentile was at 1,144 ppm-years for butadiene and 171 ppm-years for styrene. ¶Models used all person-time.

beta-coefficient (β) with 95% (CI and t	rend p-va	alue					
Model*, Form of LHC]	Butadiene			Styrene		
Lymphoid leukemia								
Quartile [†] :	Ν	RR	95% CI	Ν	RR	95% CI		
Unexposed	13	1.0	ref	10	1.0	ref		
1	9	0.72	0.29 to 1.78	10	0.75	0.29 to 1.98		
2	10	0.85	0.34 to 2.14	11	1.25	0.47 to 3.33		
3	10	2.61	1.02 to 6.67	10	1.14	0.41 to 3.16		
4	10	1.95	0.76 to 5.03	11	1.78	0.64 to 4.91		
Trend:								
All person-time: β [95% CI],			05 to 6.58) $x10^{-4}$],			.03 to 3.23) $x10^{-3}$],		
trend p-value, AIC, N‡	p=0.0	07, AIC=	=933, N=52	p=0.0	p=0.046, AIC=936, N=52			
Exposed person-time: β [95%	4.78x	10 ⁻⁴ [(1.	34 to 8.23) $x10^{-4}$],	1.24x	×10 ⁻³ [(-	0.43 to 2.91) $x10^{-3}$],		
CI], trend p-value, AIC, N	p=0.0	07, AIC=	=664, N=39§	p=0.1	146, AIC	=727, N=42§		
Exposed person-time $\leq 95^{\text{th}}$	15.40	x10 ⁻⁴ [(4	1.19 to 26.53) x10 ⁻⁴],	3.33x	10^{-3} [(-4)	4.81 to 11.47) $x10^{-3}$],		
percentile: β [95% CI], trend	p=0.0	07, AIC=	=625, N=37§	p=0.4	422, AIC	=689, N=40§		
p-value, AIC, N								
Myeloid leukemia								
Quartile:	N	RR	95% CI	N	RR	95% CI		
Unexposed	14	1.0	ref	11	1.0	ref		
1	13	1.16	0.53 to 2.56	14	1.27	0.54 to 2.98		
2	14	1.96	0.88 to 4.38	14	1.37	0.56 to 3.31		
3	13	1.47	0.64 to 3.40	14	1.85	0.74 to 4.60		
4	13	1.72	0.73 to 4.07	14	1.81	0.71 to 4.64		
Trend:	1.00	10-456 2			- 10-4 F/			
All person-time: β [95% CI],			$3.01 \text{ to } 5.18) \times 10^{-4}$],			-32.20 to 27.48) x10 ⁻⁴],		
trend p-value, AIC, N	-		=1235, N=67	p=0.877, AIC=1235, N= 67				
Exposed person-time: β [95%			$5.89 \text{ to } 5.15) \times 10^{-4}$],	-3.77×10^{-4} [(-35.71 to 28.17) $\times 10^{-4}$],				
CI], trend p-value, AIC, N			=941, N=53¶	p=0.817, AIC=1006, N=56				
Exposed person-time $\leq 95^{\text{th}}$	-0.16	$5 \times 10^{-4} [(-$	-14.68 to 14.37) x 10^{-4}],	29.50×10^{-4} [(-49.06 to 108.13) $\times 10^{-4}$],				
percentile: β [95% CI], trend	p=0.9	83, AIC=	=880, N=50 [¶]	p=0.461, AIC=963, N=54				
p-value, AIC, N	-							
Acute myeloid leukemia								
Quartile:	Ν	RR	95% CI	Ν	RR	95% CI		
Unexposed	9	1.0	ref	6	1.0	ref		
1	8	1.28	0.47 to 3.48	8	1.55	0.49 to 4.91		
2	8	2.04	0.73 to 5.70	9	2.26	0.70 to 7.31		
3	8	1.85	0.64 to 5.36	9	4.61	1.37 to 15.56		
4	8	1.90	0.63 to 5.73	9	2.42	0.69 to 8.54		
Trend:		4			4			
All person-time: β [95% CI],	-1.08×10^{-4} [(-9.12 to 6.97) $\times 10^{-4}$],			-6.23×10^{-4} [(-51.03 to 38.56) $\times 10^{-4}$],				
trend p-value, AIC, N	-		=746, N=41			= 746, N=41		
Exposed person-time: β [95%	-2.27×10^{-4} [(-12.25 to 7.70) x10 ⁻⁴],		-1.13×10^{-3} [(-6.48 to 4.22) $\times 10^{-3}$],					
CI], trend p-value, AIC, N	p=0.655, AIC=561, N=32 [¶]			p=0.679, AIC=623, N=35				

Table 3 Exposure-response analyses of butadiene or styrene ppm-years and other lymphohematopoietic cancers (LHCs): number (N) of cases, adjusted rate ratio (RR) with 95% confidence interval (CI) by exposure quartile, beta-coefficient (β) with 95% CI and trend p-value

beta-coefficient (β) with 95% (CI and						
Model*, Form of LHC			Butadiene			Styrene	
Exposed person-time $\leq 95^{\text{th}}$	-1.34×10^{-3} [(-3.93 to 1.25) $\times 10^{-3}$],		-3.02×10^{-3} [(-15.36 to 9.32) $\times 10^{-3}$],				
percentile: β [95% CI], trend	p=0.310, AIC=540, N=31 ¹		p=0.631, AIC=602, N=34				
p-value, AIC, N	•						
Non-Hodgkin lymphoma		DD		N 7	DD		
Quartile:	N	RR	95% CI	N	RR	95% CI	
Unexposed	34	1.0	ref	24	1.0	ref	
1	19	0.90	0.50 to 1.61	21	0.81	0.42 to 1.55	
2	19	0.57	0.31 to 1.04	22	1.02	0.53 to 1.98	
3 4	19 10	0.94	0.50 to 1.75	21	1.11	0.56 to 2.21	
	19	1.33	0.71 to 2.49	22	1.55	0.77 to 3.09	
Trend:	0.26-	-10 ⁻⁴ Г($2,72 + 4,25 = 10^{-41}$	0.2	2 10 ⁻³ [($2(2 + 2, 17) = 10^{-3}$	
All person-time: β [95% CI],		- `	3.73 to 4.25) $\times 10^{-4}$],		- `	-2.62 to 2.17) x10 ⁻³],	
trend p-value, AIC, N	-		= 1976, N=110			=1976, N=110	
Exposed person-time: β [95%		- `	2.49 to 5.58) $\times 10^{-4}$],		L \	$-2.56 \text{ to } 2.26) \times 10^{-3}$],	
CI], trend p-value, AIC, N	-		=1317, N=76	p=0.900, AIC=1506, N=86 4.20 $\times 10^{-3}$ [(-0.73 to 9.13) $\times 10^{-3}$],			
Exposed person-time $\leq 95^{\text{th}}$			5.68 to 23.99) $\times 10^{-4}$],				
percentile: β [95% CI], trend	p=0.0	J02, AIC	=1286, N=75	p=0.095, AIC=1462, N=84			
p-value, AIC, N							
Multiple myeloma	N 7	DD		NT	DD		
Quartile:	N 20		95% CI	N	RR	95% CI	
Unexposed	20	1.0	ref	17	1.0	ref	
1	10	0.61 0.74	0.27 to 1.35	10	0.96 0.61	0.42 to 2.20	
2 3	10 10	0.74 0.69	0.32 to 1.71 0.29 to 1.60	11 11	0.61	0.26 to 1.40 0.19 to 1.04	
5 4	10	1.01	0.43 to 2.42	11	0.44	0.19 to 1.04 0.34 to 2.08	
Trend:	10	1.01	0.43 10 2.42	11	0.84	0.34 10 2.08	
All person-time: β [95% CI],	-0.8′	2 x 10 ⁻⁴ Γ(-	-5.08 to 3.45) x10 ⁻⁴],	0.15	x10 ⁻³ [(−	1.55 to 1.85) $x10^{-3}$],	
trend p-value, AIC, N		= •	=1056, N=60	p=0.858, AIC=1056, N=60			
Exposed person-time: β [95%	-		-4.86 to 4.14) x10 ⁻⁴],	0.31×10^{-3} [(-1.44 to 2.05) $\times 10^{-3}$],			
			=669, N=40	p=0.731, AIC=730, N=43			
CI], trend p-value, AIC, N Exposed person-time $\leq 95^{\text{th}}$	-		7.64 to 19.30) $x10^{-4}$],	-1.61×10^{-3} [(-9.61 to 6.38) $\times 10^{-3}$],			
percentile: β [95% CI], trend		- `	=634, N=38	p=0.692, AIC=644, N=38			
p-value, AIC, N	p=0	590, AIC	-034, 11-30	p=0.092, AIC=044, N=38			
B-cell malignancy							
Quartile:	Ν	RR	95% CI	Ν	RR	95% CI	
Unexposed	65	1.0	ref	50	KK 1.0	ref	
1	37	0.75	0.49 to 1.15	41	0.89	0.57 to 1.40	
2	37	0.70	0.45 to 1.08	40	0.83	0.52 to 1.32	
3	37	0.70	0.60 to 1.49	40	0.85	0.52 to 1.32	
4	37	1.39	0.88 to 2.20	41	1.18	0.72 to 1.93	
Trend:	51	1.57	0.00 10 2.20	-11	1.10	0.72 (0 1.75	
All person-time: β [95% CI],	1 1 5	10^{-4} [(-(0.75 to 3.05) x 10 ⁻⁴ 1	5 65	$x 10^{-4}$ [(-4)	4.74 to 16.03) $\times 10^{-4}$],	
trend p-value, AIC, N	1.15x10 ⁻⁴ [(-0.75 to 3.05) x10 ⁻⁴], p=0.237, AIC=3785, N=213			p=0.287, AIC=3785, N=213			
$\frac{1}{1000} p^{-1} and, MC, M$	P=0.2	- <i>J</i> , , , , , , , , , , , , , , , , , , ,	5,05,17-215	P-0.207, 110-5705, 11-215			

Table 3 Exposure-response analyses of butadiene or styrene ppm-years and other lymphohematopoietic cancers (LHCs): number (N) of cases, adjusted rate ratio (RR) with 95% confidence interval (CI) by exposure quartile, beta-coefficient (β) with 95% CI and trend p-value

Table 3 Exposure-response analyses of butadiene or styrene ppm-years and other lymphohematopoietic cancers (LHCs): number (N) of cases, adjusted rate ratio (RR) with 95% confidence interval (CI) by exposure quartile, beta-coefficient (β) with 95% CI and trend p-value

Model*, Form of LHC	Butadiene	Styrene
Exposed person-time: β [95%	1.95×10^{-4} [(-0.11 to 4.02) $\times 10^{-4}$],	5.51×10^{-4} [(-5.19 to 16.20) $\times 10^{-4}$],
CI], trend p-value, AIC, N	p=0.064, AIC=2517, N=148	p=0.313, AIC=2809, N=163
Exposed person-time ≤95 th	11.00×10^{-4} [(4.23 to 17.82) $\times 10^{-4}$],	$17.00 \times 10^{-4} [(-21.05 \text{ to } 55.06) \times 10^{-4}],$
percentile: β [95% CI], trend	p=0.002, AIC=2380, N=141	p=0.381, AIC=2639, N=154
p-value, AIC, N		

*Models used attained age as of each day of follow-up as the time scale. Covariates were age at hire, year of hire, race, sex, plant and ever hourly status. Models using exposed person-time ≤95th percentile trimmed data above 1,144 and 171 ppm-years for butadiene and styrene, respectively, for leukemias and above 1,083 and 213 ppm-years for butadiene and styrene, respectively, for non-Hodgkin lymphoma, multiple myeloma and B-cell malignancy.

†Quartile (Q) cutpoints were at the following values of ppm-years:

Lymphoid leukemia -

- butadiene: Q2, 44.73; Q3, 213.43; Q4, 376.31, maximum=7,741.41
- styrene: Q2, 8.52; Q3, 27.21; Q4, 69.29, maximum=1,203.21
- Myeloid leukemia -
- butadiene: Q2, 25.20; Q3, 70.05; Q4, 230.08, maximum=-2,009.71
- styrene: Q2, 5.21; Q3, 20.71; Q4, 48.25, maximum=340.52 Acute myeloid leukemia –
- butadiene: Q2, 19.14; Q3, 59.19; Q4, 185.63, maximum=2,009.71
- styrene: Q2, 5.21; Q3, 19.73; Q4, 34, maximum=340.52
- Non-Hodgkin lymphoma –
- butadiene: Q2, 17.94; Q3, 117.22; Q4, 334.83, maximum=1,495.51
- styrene: Q2, 5.97; Q3, 23.61; Q4, 59.67, maximum=231.34 Multiple myeloma –
- butadiene: Q2, 31.42; Q3, 107.78; Q4, 386.04, maximum=2,397.73
- styrene: Q2, 2.80; Q3, 14.67; Q4, 77.99, maximum=839.61 B-cell malignancy –
- butadiene: Q2, 27.04; Q3, 124.38; Q4, 370.89, maximum=7,741.41
 - styrene: Q2, 4.63; Q3, 20.74; Q4, 61.70, maximum=1,203.21.
- ‡ AIC, Akaike information criterion; N, number of cases included in each model.
- § Restricted to ever hourly due to lack of events among never hourly.

¶ Restricted to men due to lack of events among women.

time with zero monomer exposure), lagged 0, 10 or 20 years, and lymphohematopoietic cancers (LHC)							
Monomer, Form of LHC,			Trend p-				
Lag period (years)	β	95% CI	value	AIC			
I. Butadiene							
All leukemia							
0	2.55×10^{-4}	$(0.52 \text{ to } 4.57) \text{ x} 10^{-4}$	0.014	2384			
10	2.58×10^{-4}	$(0.38 \text{ to } 4.78) \text{ x} 10^{-4}$	0.022	2337			
20	2.63×10^{-4}	$(-0.05 \text{ to } 5.31) \text{ x}10^{-4}$	0.055	2120			
Lymphoid leukemia							
0	3.81×10^{-4}	$(1.05 \text{ to } 6.58) \text{ x}10^{-4}$	0.007	933			
10	3.73×10^{-4}	$(0.78 \text{ to } 6.68) \times 10^{-4}$	0.013	933			
20	3.00×10^{-4}	$(-0.70 \text{ to } 6.69) \text{ x}10^{-4}$	0.112	868			
Myeloid leukemia							
0	1.09×10^{-4}	$(-3.01 \text{ to } 5.18) \times 10^{-4}$	0.602	1235			
10	1.16×10^{-4}	$(-3.33 \text{ to } 5.66) \times 10^{-4}$	0.612	1189			
20	2.11×10^{-4}	$(-2.90 \text{ to } 7.11) \text{ x}10^{-4}$	0.410	1054			
Acute myeloid leukemia							
0	-1.08×10^{-4}	$(-9.12 \text{ to } 6.97) \text{ x}10^{-4}$	0.793	746			
10	-0.72×10^{-4}	$(-8.54 \text{ to } 7.10) \text{ x}10^{-4}$	0.857	724			
20	$-0.14 \mathrm{x} 10^{-4}$	$(-8.85 \text{ to } 8.57) \text{ x}10^{-4}$	0.975	641			
Non-Hodgkin lymphoma							
0	0.26×10^{-4}	$(-3.73 \text{ to } 4.25) \times 10^{-4}$	0.898	1976			
10	$1.10 \mathrm{x} 10^{-5}$	$(-43.61 \text{ to } 45.80) \text{ x}10^{-5}$	0.962	1973			
20	-6.18×10^{-5}	$(-67.04 \text{ to } 54.67) \times 10^{-5}$	0.842	1876			
Multiple myeloma							
0	$-0.82 \mathrm{x} 10^{-4}$	$(-5.08 \text{ to } 3.45) \times 10^{-4}$	0.707	1056			
10	-7.54×10^{-5}	$(-52.81 \text{ to } 37.74) \times 10^{-5}$	0.744	1054			
20	-9.77×10^{-5}	$(-64.26 \text{ to } 44.73) \times 10^{-5}$	0.725	955			
B-cell malignancy							
0	1.15×10^{-4}	$(-0.75 \text{ to } 3.05) \text{ x}10^{-4}$	0.237	3785			
10	1.13×10^{-4}	$(-0.95 \text{ to } 3.21) \text{ x}10^{-4}$	0.287	3779			
20	0.73×10^{-4}	$(-1.95 \text{ to } 3.40) \text{ x}10^{-4}$	0.595	3517			
II. Styrene							
Leukemia							
0	1.04×10^{-3}	$(-0.26 \text{ to } 2.33) \times 10^{-3}$	0.116	2386			
10	1.03×10^{-3}	$(-0.38 \text{ to } 2.45) \text{ x}10^{-3}$	0.153	2339			
20	0.96×10^{-3}	$(-0.82 \text{ to } 2.74) \text{ x}10^{-3}$	0.289	2122			

Table 4 Adjusted* beta-coefficient (β) with 95% confidence interval (CI), trend p-value, with Akaike information criterion (AIC), for the relation between butadiene or styrene ppm-years (including person-time with zero monomer exposure), lagged 0, 10 or 20 years, and lymphohematopoietic cancers (LHC)

Monomer, Form of LHC,			Trend p-		
Lag period (years)	β	95% CI	value	AIC	
I ymphoid laylramia					
Lymphoid leukemia	$1.62 - 10^{-3}$	$(0, 02 + 2, 22) = 10^{-3}$	0.046	026	
0	1.63×10^{-3}	$(0.03 \text{ to } 3.23) \times 10^{-3}$	0.046	936	
10	1.67×10^{-3}	$(-0.06 \text{ to } 3.40) \times 10^{-3}$	0.058	934	
20	1.43×10^{-3}	$(-0.74 \text{ to } 3.60) \text{ x}10^{-3}$	0.197	869	
Myeloid leukemia					
0	-2.36×10^{-4}	$(-32.20 \text{ to } 27.48) \times 10^{-4}$	0.877	1235	
10	-4.37×10^{-4}	$(-39.04 \text{ to } 30.30) \text{ x}10^{-4}$	0.805	1189	
20	-3.53×10^{-4}	$(-46.45 \text{ to } 39.40) \text{ x}10^{-4}$	0.872	1054	
Acute myeloid leukemia					
0	-6.23×10^{-4}	$(-51.03 \text{ to } 38.56) \times 10^{-4}$	0.785	746	
10	-4.02×10^{-4}	$(-47.81 \text{ to } 39.77) \times 10^{-4}$	0.857	724	
20	-2.72×10^{-4}	$(-54.77 \text{ to } 49.32) \times 10^{-4}$	0.918	641	
Non-Hodgkin lymphoma					
0	-0.23×10^{-3}	$(-2.62 \text{ to } 2.17) \times 10^{-3}$	0.854	1976	
10	-3.04×10^{-4}	$(-29.50 \text{ to } 23.43) \times 10^{-4}$	0.822	1973	
20	-7.57×10^{-4}	$(-42.45 \text{ to } 27.30) \times 10^{-4}$	0.670	1876	
Multiple myeloma					
0	0.15×10^{-3}	$(-1.55 \text{ to } 1.85) \text{ x}10^{-3}$	0.858	1056	
10	1.04×10^{-4}	$(-17.61 \text{ to } 19.70) \times 10^{-4}$	0.913	1050	
20	-0.52×10^{-4}	$(-23.95 \text{ to } 22.90) \times 10^{-4}$	0.965	955	
20	0.52410	(23.75 10 22.70) X10	0.705	155	
B-cell malignancy					
0	5.65×10^{-4}	$(-4.74 \text{ to } 16.03) \text{ x}10^{-4}$	0.287	3785	
10	5.42×10^{-4}	$(-5.97 \text{ to } 16.81) \text{ x} 10^{-4}$	0.351	3779	
20	3.36×10^{-4}	$(-11.18 \text{ to } 17.91) \text{ x}10^{-4}$	0.651	3517	

Table 4 Adjusted* beta-coefficient (β) with 95% confidence interval (CI), trend p-value, with Akaike information criterion (AIC), for the relation between butadiene or styrene ppm-years (including person-time with zero monomer exposure), lagged 0, 10 or 20 years, and lymphohematopoietic cancers (LHC)