"This study is protected by copyright and remains the proprietary data of the Study Submitter. This study is submitted to the EPA as part of a regulatory submission only and may not be used by any third party for any purpose without the express written consent of the Study Submitter or full compliance with all applicable laws, including all data compensation obligations under FIFRA in the United States, or any similar data compensation rights in any other applicable jurisdiction. The Study Submitter expressly reserves all of its rights to data compensation for this Study in any applicable jurisdiction in the world."

B11-0836

Receipt No. 827-06-D-3206

STUDY CODE: B11-0836

FINAL REPORT

TWENTY-EIGHT-DAY REPEATED-DOSE ORAL TOXICITY STUDY OF IN RATS

June 2007

STATEMENT

I, the undersigned, hereby declare that this report provides correct English translation of the final report (Study Code B11-0836, issued on June 15, 2007).

October 5, 2009

Date

GLP STATEMENT

Sponsor:	
Title:	Twenty-Eight-Day Repeated-Dose Oral Toxicity Study of in Rats
Study Code:	<u>B11-0836</u>

I, the undersigned, hereby declare that this study was conducted in compliance with '

And, I confirmed that this report accurately reflects the raw data obtained and that data of the study has reliability.

June 15, 2007

<u>QUALITY ASSURANCE STATEMENT</u>

Sponsor:	
Title:	Twenty-Eight-Day Repeated-Dose Oral Toxicity Study of in Rats
Study Code:	B11-0836

This study was audited and inspected by Quality Assurance Section of

The dates audited and/or inspected and the dates reported

of these results to the study director and management are as follows.

Items of Inspections	Dates of Inspections	Dates of Inspections and
and Audits	and Audits	Audits Reports
Protocol	January 15, 2007	January 15, 2007
Animal receipt	January 16, 2007	January 16, 2007
Amendment to protocol	January 22, 2007	January 24, 2007
Preparation of test substance	January 22, 2007	January 24, 2007
Re-inspection of protocol	January 23, 2007	January 24, 2007
Administration and clinical sign observation	January 24, 2007	January 24, 2007
Amendment to protocol (2 nd)	January 27, 2007	January 27, 2007
Amendment to protocol (3 rd)	May 9, 2007	May9,2007
Pathological data	May 22, 2007	May22,2007
Animal data	May24,2007	May24,2007
Detailed clinical observation data and sensorimotor function data	May24,2007	May 24, 2007
Documents of test substance and housing conditions	May 24, 2007	May24,2007
Clinical chemistry data	June 1, 2007	June 4, 2007
Re-inspection of animal data	June 6, 2007	June 6, 2007
Documents of accident and deviation	June 12, 2007	June 12, 2007
Draft of final report	June 13, 2007	June 13, 2007
Re-inspection of draft final report	June 15, 2007	June 15, 2007
Draft of final report (2 nd)	June 15, 2007	June 15, 2007
Re-inspection of draft final report (2 nd)	June 15, 2007	June 15, 2007
Final report	June 15, 2007	June 15, 2007

Following items were reported to the study director and management on the basis of the audit of facility or audit results in other study.

Items of Audits	Dates of Audits	Dates of Audits Reports
Quarantine and acclimatization	December 7, 2006	May 23,2007
Allocation and animal identification	December 7, 2006	May23,2007
Body weight measurements	November 1, 2006	May 23,2007
Food intake measurements	November 1, 2006	May 23, 2007
Detailed clinical observation and sensorimotor function	December 11, 2006	May23,2007
Urine sampling	December 27, 2006	May23,2007
Blood sampling	January 16, 2007	May 23, 2007
Dissection, necropsy and organ weight measurements	January 16, 2007	May23,2007
Hematology	January 16, 2007	May 23,2007
Blood chemistry	January 16, 2007	May23,2007
Urinalysis	January 16, 2007	May 23, 2007
Pathological preparation	February 6, 9 and 15, 2007	May23,2007

I, the undersigned, hereby declare that this report provides an accurate description of the methods and procedures used in this study and that the reported results accurately reflect the raw data obtained.

Section Chief, Quality Assurance:

June 15, 2007

TABLE OF CONTENTS

TITLE	3
SPONSOR	3
TESTING FACILITY	3
PURPOSE OF STUDY	3
TESTING METHOD	3
GLP COMPLIANCE	3
PERIOD OF STUDY	4
LOCATION AND PERIOD FOR RETENTION OF RAW DATA AND	
SPECIME _{NS}	4
RETENTION OF ORIGINAL PROTOCOL AND FINAL REPORT	4
AUTHOR AND PERSONNEL CONCERNED WITH STUDY	5
AUTHOR APPROVAL	5
SUMMAR Y	6
MATERIALS AND METHODS	7
1. TEST SUBSTANCE	7
2. ANIMALS	8
3. HOUSING CONDITIONS	8
4. GROUPING	9
5. STABILITY OF TEST SUBSTANCE	9
6. PREPARATION OF FORMULATIONS	10
7. ADMINISTRATION	10
8. OBSERVATIONS	10
9. STATISTICAL ANALYSIS	18
ENVIRONMENTAL FACTORS THAT MIGHT HAVE AFFECTED	
THE RELIABILITY OF STUDY RESULTS	18
RESULTS	19
1. CLINICAL SIGNS	19
2. DETAILED CLINICAL OBSERVATIONS	19
3. SENSORIMOTOR FUNCTION	20
4. BODY WEIGHTS ·····	20
5. FOOD INTAKES	20
6. HEMATOLOGICAL EXAMINATIONS	20
7. BLOOD CHEMICAL EXAMINATIONS	21
8. URINALYSES	21
9. ORGAN WEIGHTS	21
10. NECROPSY	21

11.	HISTOPATHOLOGICAL EXAMINATIONS	22
DISCUS	SSION	23
FIGURE	S	
1	Body weights	28
2	Food in tak es	30
TABLES	3	
1	Summary of clinical signs	32
2	Summary of detailed clinical observations	33
3	Summary of reflex	58
4	Summary of grip strength	61
5	Summary of motor activity	62
6	Summary of body weights	63
7	Summary of food intakes	65
8	Summary of hematological examinations	67
9	Summary of blood chemical examinations	69
10	Summary of urinalyses	71
11	Summary of absolute organ Weights	74
12	Summary of relative organ weights	75
13	Summary of macroscopic examinations	76
14	Summary of histopathological examinations	77
ADDEN	DA	
1	Clinical signs of individual animals	82
2	Detailed clinical observations of individual animals	86
3	Reflex of individual animals	156
4	Grip strength of individual animals	158
5	Motor activity of individual animals	160
6	Body weights of individual animals	162
7	Food intakes of individual animals	165
8	Hematological data of individual animals	168
9	Blood chemical data of individual animals	172
10	Urinalytic data of individual animals	176
11	Absolute organ weights of individual animals	182
12	Relative organ weights of individual animals	184
13	Pathological findings of individual animals	186
APPENI	DIX 1 "STABILITY ANALYSIS OF HOMOGENEITY, STA	BILITY AND
	CONCENTRATION ANALYSES OF THE TEST SUBSTANCE FO	RMULATION

(Study code: X18-0836)..

.

•

.

APPENDIX 2 "HISTOPATHOLOGICAL PHOTOS"

Study Code:	B11-0836
Test Substance Code:	HR 6851
Sponsor Code:	D-0060

TITLE

Twenty-Eight-Day Repeated-Dose Oral Toxicity Study of in Rats

PURPOSE OF STUDY

The purpose of this study is to define the type, severity and reversibility of toxicological signs of the test substance by observing the functional and morphological changes in animals receiving repeated doses orally for 28 days.

TESTING METHOD

This study was conducted in accordance with "28-day Repeated Dose Toxicity Study in Mammalian Species" prescribed in "Concerning Testing Methods Relating to the New Chemical Substances

GLP COMPLIANCE

This study was conducted in compliance with "Concerning Standard of the Testing Facilities Conducting the Test Relating to the New Chemical Substances"

PERIOD OF STUDY

Commencement of Study:	January 11, 2007
Animal Receipt:	January 16, 2007
Initiation of Examination (Initiation of Dosing):	January 24, 2007
Terminal Necropsy of Dosing Period:	February 21, 2007
Initiation of Recovery Period:	February 21, 2007
Terminal Necropsy of Recovery Period:	March 7, 2007
Termination of Examination (Termination of Histology):	May2,2007
Completion of Study:	June 15, 2007

LOCATION AND PERIOD FOR RETENTION OF RAW DATA AND SPECIMENS

The raw data, protocol and amendment, study contract documents, test substance information, final report, other record documents and specimens will be stored in the archive of **and the second of** our organization, and samples of every lot of the test substance in the test substance storage room, for a period of 10 years from the date of receipt of the notification that they are applicable to Article 4, Paragraphs 1 or 2, Article 4-2, Paragraphs 2.3 or 8. Article 5-4. Paragraph 2. Article 24. Paragraph 2 or Article 25-3, Paragraph 2 of the The sponsor will inform **and the state of the date of the date of the date of the notification.** After termination of the retention period, any measures taken will be done so with the approval of the sponsor. Samples and specimens that are liable to deteriorate markedly will be retained for 10 years after

receipt of the notification or only for as long as the quality of the preparation permits evaluation, and they will be disposed with approval of the sponsor.

RETENTION OF ORIGINAL PROTOCOL AND FINAL REPORT

An original protocol, original protocol amendments and an original final report will be retained at The copies of their originals that the study director will have been recognized to be accurate copy will be sent to the sponsor.

AUTHOR AND PERSONNEL CONCERNED WITH STUDY

Study Director:

(Planning and management of the study, evaluation of the results, report creation, and over all responsible for the technical conduct of the study)

Study Staff:

(Quarantine, acclimation and housing management of animals, preparation and administration of the test substance, clinical observation, detailed clinical observation, sensorimotor function, body weights and food intakes measurements, and responsible for the animal examination)

Person in charge of Pathologic Examination:

histopathological examinations, and responsible for the histopathology)

Person in charge of Clinical Chemistry:

(Hematological and blood chemical examinations, urinalysis, and responsible for the biochemistry of the specimens)

AUTHOR APPROVAL

Study Director:

Signed in original

June 15, 2007

Section 2 (Toxicology area)

SUMMARY

A 28-day repeated-dose oral toxicity study of was performed in groups of five male and five female Cr1:CD(SD) rats at 5 weeks of age. The high dose was set at 125 mg/kg/day, and altogether three doses including 25 and 5 mg/kg/day were employed. Recovery groups were also set for the 125 mg/kg and vehicle control groups to investigate the reversibility of the effects.

The test substance caused changes suggesting effects on the incisor, liver, and kidney.

As the effects on the incisor, decreased iron pigments and irregular alignment of the ameloblasts at the maturation stage and cyst formation in the papillary layer were observed in both sexes of the 125 mg/kg group. In the necropsy, mottled teeth of the incisor were observed in both sexes.

As the effects on the liver, periportal hypertrophy, periportal prominent nucleoli and single cell necrosis of the hepatocytes in males and diffuse hypertrophy of the hepatocytes in females were observed in the 125 mg/kg group. In the necropsy, enlargement of the liver was observed in both sexes of the 125 mg/kg group. As for the organ weights, relative liver weight in males and absolute and relative liver weights in females were increased in the 125 mg/kg group. In the blood chemical examinations, increased levels of AST, ALT and ALP and decreased level of T-Cho were found as the related changes in males of the 125 mg/kg group. In females of the same group, increased levels of γ -GTP, TG, Albumine, A/G ratio and T-Bil and decreased level of ChE were found.

As the effects on the kidney, dilatation of the tubules in males and ballooning of the tubular epithelium in females were observed in the 125 mg/kg group. Furthermore, relative kidney weight in males given 25 mg/kg or more and absolute and relative kidney weights in females given 125 mg/kg were increased.

The changes found during the dosing period and at the end of the dosing period were considered to be recovered or in a recovery trend.

Based on these results, it was considered that had mainly effects on the incisor, liver, and kidney. However, it was also considered that these changes were reversible. The No-Observed-Adverse-Effect Level (NOAEL) of was considered to be 5 mg/kg/day based on increased relative kidney weight in males given 25 mg/kg or more.

MATERIALS AND METHODS

TEST SUBSTANCE (Information provided by the sponsor)

at

Degree of Solubility: Water; insoluble

DMSO; soluble (arbitrary mixable) Acetone; soluble (arbitrary mixable) Others; -

1.8 Storage Conditions

The test substance was stored at room temperature under a light shielding condition (desiccator No. 2 in the test substance storage room, permissible temperature range: 10-30°C)

1.9 Handling Precaution

Glove, mask, cap and lab coat were put on.

2. ANIMALS

Crl:CD(SD) rats (SPF) of 33 males and 33 females were obtained from

4 weeks old. Animals were acclimatized for 8 days including 6 days quarantine. No abnormalities were noted in any animals during the quarantine and acclimation periods. All animals were allocated to groups to ensure homogeneity of mean body weights using body weight-stratified randomization on two days before the start of the administration. The animals not treated were excluded from the study and euthanized under ether anesthesia. At the onset of the treatment, the animals were five weeks old with body weight ranges of 135.0-152.5 g and 117.8-134.4 g for males and females, respectively. Animals were identified by means of a marker on the tail before grouping and ear-tags after grouping.

3. HOUSING CONDITIONS

All animals were bred at the barrier-system animal rooms (room No. 4 during the quarantine period, room No. 8 after the quarantine), which were maintained at a stable temperature (21-25°C) and relative humidity (40-70%) with 10-15 air changes per hour and artificial light-dark cycle of 12-12 hours (light on: 7:00 and light off: 19:00), in the biotron (1) throughout the whole feeding period including the quarantine and acclimation periods. The actual temperature and humidity were 22.5-24.0°C and 46.5-58.4%, respectively.

The rats were housed in hanging stainless steel cages with wire-mesh floor at three or five animals/cage (260 W×380 D×180 H mm

acclimation, and at one animal/cage (165 W×300 D×150 H mm,

after grouping. Undertrays were changed once a week before grouping, and twice a week after grouping. Feeders, cages and racks were changed once at the grouping, and once at the termination of the dosing period for the recovery group. Racks and cages were identified by individual cards.

The animals had free access to an MF pelleted diet (Lot No. 061004 and 061204

and chlorinated water from the **provided** supply via automatic watering system with sipper tubes. The diet and housing materials were autoclaved at 121°C for 30 min prior to use. Analysis of the diet was performed in Japan Food Research laboratories, and the analytical data were provided by the manufacturer. The tested parameters met the requirements in our laboratories according to the "Toxic Substances Control Act of US-EPA". Contaminants in drinking water were analyzed twice yearly in Oita Prefecture Pharmaceutical Association according to the water regulations of the "Notification No. 101 of Environmental Health Bureau, MHLW" except for test of the taste in our laboratory. Contaminants in the water were in the stated ranges in our laboratory.

Group	Dose	Volume	Concentration of dosing formulation	Number of Anin	nals (Animal No.)
	(mg/kg/day)	(mL/kg)	<u>(w/v%/6)</u>	Male	Female
Vehicle control	0	10	0	5(1-5)	5 (31 - 35)
Vehicle control (recovery)	0	10	0	5 (6 - 10)	5 (36 - 40)
Low dose	5	10	0.05	5(11-15)	5 (41 - 45)
Intermediate dose	25	10	0.25	5 (16 - 20)	5 (46 - 50)
High dose	125	10	1.25	5 (21 - 25)	5 (51 - 55)
High dose (recovery)	125	10	1.25	5(26 - 30)	5(56 - 60)

4. **GROUPING**

Grouping was as follows.

Rationale for dosage selection: A Range finding study of 7-day repeated oral treatment was performed at 0, 25, 250, 500 and 1,000 mg/kg/day in our Hita labolatory. As a result, death occurred in females of the 1,000 mg/kg group, and effects of test substance on the liver, such as enlargement of the liver and increases in liver weight were noted in both sexes of the groups given 250 mg/kg or more. Accordingly, the high dose was set at 125 mg/kg/day and lower doses of 25 and 5 mg/kg were set for the present study. Recovery groups were also set for the 125 mg/kg and vehicle control groups.

5. STABILITY OF TEST SUBSTANCE

Stability of the test substance during the dosing period was confirmed with infrared (IR) spectrophotometer in our **exercised** (See APPENDIX 1, Study code: X18-0836). IR spectrum of the test substance within 4000 cm⁻¹-400 cm⁻¹ was compared with that provided by the sponsor before dosing to determine the identity. The test substance was also analyzed to confirm the stability before and after the dosing period to confirm the stability.

- 9 -

6. PREPARATION OF FORMULATIONS

6.1 Vehicle

The test substance was hydrolysable. Therefore, olive oil (Lot No. 0400HY, including 0.5% Tween80 (Lot No. DPK6694, Wako Pure Chemical Industries) was selected as the vehicle.

6.2 Preparation and Storage

The test substance was accurately weighed and mixed with olive oil (including 0.5% Tween80) to prepare the 1.25 w/v% formulation. The lower concentration formulations of 0.05 and 0.25 w/v% were prepared by diluting the 1.25 w/v% formulation with the vehicle. These were stirred with the homogenizer (ULTRA-TURRAX T25 basic, IKA WERKE). The formulations were stored at the dark and cold place (cool box No. 15 in the test substance preparation room).

6.3 Homogeneity and Stability Tests

The homogeneity and stability analyses were performed in our **Mathematical Second Sec**

6.4 Concentration Conformation

The concentration analysis was performed in our **Concentration** (See APPENDIX 1, Study code: X18-0836). The concentrations of the 1.25, 0.25 and 0.05 w/v% formulations were confirmed to be within $100\pm10\%$ of each nominal concentration at the first preparation of the dosing period.

7. ADMINISTRATION

The formulations were repeatedly administered daily in the morning by oral gavage using a syringe (Terumo) connected to a Nelaton catheter (Terumo) for 28 days. Thereafter, a 14-day recovery period was set.

8. OBSERVATIONS

Concerning the numbering of day and week, the day of initiation of dosing was regarded as day 1, the day before initiation of dosing as day -1 and the week of initiation of dosing as week 1. The day after the last dosing was regarded as day 1 (recovery) and the week of initiation of recovery as week 1 (recovery).

8.1 Clinical Signs

During the dosing period, all animals were observed three times a day, i.e., before dosing, during and just after dosing, and in the afternoon, daily from day 1 to day 28. During the recovery period, observation was performed twice daily i.e., in the morning and in the afternoon.

8.2 Detailed Clinical Observations

The detailed examinations in all animals were performed once before dosing. Thereafter, the examinations were performed once weekly during the dosing and recovery periods on a blind test basis. The blind test was performed using the random numbers and observation labels without identifying the dosing group.

1) Observations at removal from cage

Animal reactions such as excitement from external stimuli (holding animals or bringing a hand close to animals to hold, etc.) were observed.

Observation items: Ease of removal, Vocalization

2) Handling observations

Observation items: Muscle tone, Hypothermia, Piloerection, Hair appearance (staining and unkempt hair), Skin and mucous color (paleness, reddening and cyanosis), Eyes (lacrimation, exophthalmos and pupillary size), Salivation, Secretion

3) Observation in arena

Animals were placed in a standard arena (on an observation platform) and observed for 1 min or more, and the frequencies of defecation (number of feces) and urination (number of pools) were recorded for 1 min.

Observation items: Posture, Motor activity level, Respiration, Lid closure, Gait characteristics, Tremor, Twitch, Convulsion, Stereotypical behavior, Abnormal behavior

8.3 Sensorimotor Function

All animals were examined in week 4 of the dosing period, but not in the recovery period, since no abnormalities were noted in week 4 of the dosing period.

1) Reflex

Reactions of animals were observed and made a score when proper stimuli were given their test subjected sensory organs. The examinations were also performed on a blind test basis.

(1) Approach contact/touch response

The animal's response when a blunt probe was brought approximately 3 cm from the animal's nose for 4 seconds was assessed.

(2) Pinna response

The animal's response when a sudden sound of a finger snap was produced was assessed.

(3) Pain response

The animal's response when the animal's tail was pinched with a clothespin between one-third and base of the tail was assessed.

(4) Pupillary reflex

Following darkness adaptation of the animal's eyes, pupil constriction in response to a bright beam of a light was observed.

(5) Air righting reflex

The animal's response when the animal was held with ventral surface uppermost approx. 30 cm height from the flat surface and released was assessed.

2) Grip strength

The forelimbs and hindlimbs grip strengths were measured with the automated grip strength meter (COLUMBUS) on a blind test basis. Two trials were performed, and the mean values of the forelimbs or hindlimbs were calculated for each animal.

3) Locomotor activity counts

Locomotor activity level of each animal was counted with the activity monitoring system (SCANET: MV-10, MAYTES) by the number of crossing IR beam for 1 hour at 10 min intervals.

8.4 Body Weights

Body weights were measured on day -2 (allocation to groups), and on days 1, 3, 8, 12, 17, 21, 26 and 28 during the dosing period and on days 1, 5, 10 and 14 (recovery) during the recovery period. In addition, immediately before necropsy, body weights were measured for calculation of the relative organ weights.

8.5 Food Intakes

Food intakes were measured at allocation to groups, and on days 1, 3, 8, 15, 22 and 28 during the dosing period and on days 1, 4, 8 and 14 (recovery) during the recovery period. Mean food intakes per day were calculated from their remainders for each period.

8.6 Hematological Examinations

Blood or plasma samples were obtained by blood sampling from the abdominal aorta under ether anesthesia after overnight fasting (16 to 20 hr) at completion of the dosing period (excluding the recovery groups) and at completion of the recovery period. The samples were determined for the following items. In addition, the blood smears were made for unmeasurable cases. As an anticoagulant, 3.2% sodium citrate aqueous solution (Lot No. LTR3558, Wako Pure Chemical Industries) was used for the determination of prothrombin time and activated partial thromboplastin time, and EDTA-2K (Lot No. G5063, Sysmex) for other measurements.

	Parameters		Method
1)	Red blood cell count (RBC)	(×10 ⁴ /µL)	Electrical resistance detection
2)	White blood cell count (WBC)	$(\times 10^{2}/\mu L)$	Electrical resistance detection
3)	Hemoglobin conc. (Hb)	(g/dL)	Noncyanhemoglobin method RBC×MCV
4)	Hematocrit value (Ht)	(%)	10 ³
5)	Mean corpuscular volume (MCV)	(fL)	Electrical resistance detection
6)	Mean corpuscular hemoglobin (MCH)	(pg)	$\frac{\text{Hb}}{\text{RBC}} \times 10^3$
7)	Mean corruge ler hemoglohin cone (MCH	C) (~/dI)	$\frac{Hb}{Ht} \times 10^2$
')	Mean corpuscular hemogroum cone. (MCH	(g/uL)	
8)	Platelet count (Platelet)	(×10 ⁄µL)	Electrical resistance detection
9)	Reticulocyte count (Reticulo)	(%)	RNA staining
10)	Prothrombin time (PT)	(sec)	Magnetic sensor
11)	Activated partial thromboplastin time (APT	T) (sec)	Magnetic sensor
12)	Differentiation of leukocytes	(%)	Flow cytometry technique
	Neutrophils (Neutro)		
	Eosinophils (Eosino)		
	Basophils (Baso)		
	Lymphocytes (Lymph)		
	Monocytes (Mono)		
	Large unstained cells (LUC)		
1)		•	

- 1)-8) CELL-DYN3500, Abbott Laboratories
- 9), 12) ADVIA 120, Bayer Medical
- 10), 11) KC-10A, AMELUNG

8.7 Blood Chemical Examinations

Serum samples were separated from blood samples collected at the same times as those described in section 8.6, and the following items were determined in the obtained serum samples.

	Parameters		Method
1)	Aspartate aminotransferase ((AST) (IU/L)	UV method (method based on JSCC)
2)	Alanine aminotransferase (A	LT) (IU/L)	UV method (method based on JSCC)
3)	Alkaline phosphatase (ALP)	(IU/L)	<i>p</i> -Nitrophenyl phosphate method
4)	Cholinesterase (ChE)	(IU/L)	Butyrylthiocholine iodide method
5)	γ-Glutamyl transpeptidase (γ	-GTP) (IU/L)	L-y-glutamyl-3-carboxy-4-nitroanilide
			method
6)	Total cholesterol (T-Cho)	(mg/dL)	COD ADPS method
7)	Triglyceride (TG)	(mg/dL)	GPOADPS glycerol blocking method
8)	Glucose	(mg/dL)	Hexokinase-G-6-PDH method
9)	Total protein (T-Protein)	(g/dL)	Biuret method
10)	Albumin	(g/dL)	Bromocresol green method
11)	A/Gratio		Albumin T-Protein—Albumin (calculated value)
12)	Blood urea nitrogen (BUN)	(mg/dL)	Urease GIDH method
13)	Creatinine	(mg/dL)	Creatininase F-DAOS method
14)	Total bilirubin (T-Bil)	(mg/dL)	Enzyme method
15)	Calcium (Ca)	(mg/dL)	OCPCmethod
16)	Inorganic phosphorus (IP)	(mg/dL)	Fiske-Subbarow method
17)	Sodium (Na)	(mEq/L)	Crown-Ether membrane
			electrode method
18)	Potassium (K)	(mEq/L)	Crown-Ether membrane
			electrode method
19)	Chloride (Cl)	(mEq/L)	Coulometric titration method
1),	2), 4), 9), 10), 14)	7150 Automatic Au	nalyzer, Hitachi
3), 5)-8), 12), 13), 15), 16)		7170 Automatic Au	nalyzer, Hitachi
17)-19)		ΡVA-α Π, A & T	

8.8 Urinalyses

Urinalysis was performed once (day 28) during the dosing period (excluding the recovery groups) and once (day 14) during the recovery period. Urine samples (accumulated for 15-17 hr) collected in individual metabolic cages (150 W×200 D×263 H mm) were determined with drinking water *ad libitum*. The urine sediments were stained and examined in males and females of the vehicle control and 125 mg/kg groups at the end of the dosing period. The urine sediments were not examined at the end of the recovery period since no abnormalities were noted at the end of the dosing period.

	Parameters		Method
1)	Urine volume	(m/L)	Volumetric method
2)	Color		Macroscopy
3)	Turbidity		Macroscopy
4)	Urine specific gravity (Sp.Gr.)		Refractive index
5)	pH		Test paper
6)	Protein		Test paper
7)	Glucose		Test paper
8)	Occult blood		Test paper
9)	Urinary sediments		Sternheimer modified
~			

1) Measuring cylinder

4) SPR-N, ATAGO

5)-8) Hema-Combistix, Bayer Medical

9) Biological microscope, BH2, OLYMPUS

8.9 Pathological Examinations

1) Necropsy

All animals were subjected to the detailed gross necropsy including body surface, all orifices, cranial, thoracic and abdominal cavities, and these contents.

2) Organ weights

The weights of the following organs were measured in all animals. The relative organ weight was calculated based on the body weight at the time of necropsy.

* Left and right organs were measured totally.

Liver(g), heart(g), kidneys*(g), testes*(g), epidid ymides*(g), ovaries*(mg), brain(g), spleen(g), thymus(mg) and adrenals*(mg)

- 3) Histopathological examinations
 - (1) The following organs and tissues were taken in all animals.

Category	Organs and Tissues			
Respiratory system	Trachea, lungs			
Digestive system	Incisors, Stomach, intestine (duodenum to rectum,			
	with Peyer's patches), liver			
Cardiovascular system	Heart			
Urinary system	Kidneys, urinary bladder			
Reproductive system	Testes, epididymides, prostate, seminal vesicle,			
	ovaries, uterus, vagina			
Nervous system	Brain (cerebrum, cerebellum and pons), spinal cord,			
	sciatic nerve			
Hematopoietic and lymphatic	Bone marrow (femur), axillar and mesenteric lymph			
systems	nodes, spleen, thymus			
Endocrine system	Pituitary gland, thyroid (with parathyroids), adrenals			
Special sense organ	Eyeballs			

The trachea, lungs and urinary bladder were filled with 10% neutralized buffiered formalin before taken. The stomach and intestine were filled and fixed with 10% neutralized buffiered formalin and were washed with water. All organs/tissues were preserved in 10% neutralized buffiered formalin. However, the testes and epididymides were fixed in Bouin's solution.

(2) Light microscopic examinations were performed for the organs and tissues of the following groups after embedding in paraffin, sectioning and hematoxylin and eosin (HE) staining.

Organ and tissue	Vehicle control group	Vehicle control recovery group	5 mg/kg group	25 mg/kg group	125 mg/kg group	125 mg/kg recovery group
Trachea	₹₽	-	-	-	3,5	-
Lungs	3,5	-	-	-	37	-
Incisors ^{a)}	₹₽	35	Зq	35	35	32
Forestomach	35	-	-	-	3₽	-
Glandular stomach	₹₽	-	-	-	35	-
Duodenum-ileum	₹₽	-	-	-	35	-
Cecum- rectum	34	-	-	-	35	-
Liver ^{a)}	35	3,5	35	3 ,5	3 9	35
Heart ^{b)}	35	ð	-	-	3 ,5	ð
Kidneys ^{a)}	52	Зq	35	3°5	32	35

Organ and tissue	Vehicle control group	Vehicle control recovery group	5 mg/kg group	25 mg/kg group	125 mg/kg group	125 mg/kg recovery group
Urinary bladder	2¢	-	-	-	3 ,5	-
Testes ^{b)}	රී	ර	-		ර	ð
Epididymides	රී	-	-	-	ð	-
Prostate	රී	-	-	-	ð	-
Seminal vesicles	රී	-	-	-	ð	-
Ovaries	Ŷ	-	-	-	ę	-
Uterus	Ŷ	-	-	-	Ŷ	-
Vagina	Ŷ	-	-	-	Ŷ	-
Cerebrum, cerebellum, pons ^{b)}	\$\$	ę	-	-	qs	ę
Spinal cord	3 5	-	-	-	3 ,5	-
Sciatic nerve	3,5	-	-	-	3 9	-
Bone marrow	Зq	-	-	-	35	
Axillar lymph nodes	₹\$	-	-	-	37	-
Mesenteric lymph nodes	35	-	-	-	35	-
Spleen	35	-	-	-	3 ,5	-
Thymus	3 5	-	-	-	3€	-
Pituitary gland	35	-	-	-	3₽	-
Thyroid	Зq	-	-	-	3₽	-
Parathyroids	35	-	-	-	35	-
Adrenals	35	-	-	-	3°5	-
Eye balls	32	-	-	-	Зq	-

- a) Since changes suspected to be effects of the test substance were noted in the organ weights or the necropsy in males and females of the 125 mg/kg group, histopathological examinations for both sexes of all groups including the recovery groups were done.
- b) Since changes suspected to be effects of the test substance were noted in the organ weights in males or females of the 125 mg/kg recovery group, histopathological examinations for the recovery groups were done.

4	^		1.*	• •	•	1 .
1	- X 1	The tollowing	organe/figenies	Ware evenined	20 10 2010000000	Lectone.
ł			UI Z allo/ lissues	wele examined	as macroscour	icsions.
	·- /					

Group (Animal No.)	Organs and tissues		
25 mg/kg group (No. 20)	Testes		
25 mg/kg group (No. 47)	Lungs		
125 mg/kg group (No. 22)	Incisors (lower)		
125 mg/kg recovery group (No. 57)	Incisors (lower)		
125 mg/kg recovery group (No. 59)	Thyroid		

ſ	4)	The specia	l staining	of following	organs/tissues	was performed.
۰.	- /				- 0	

Group (Animal No.)	Organs and tissues	Method
Vehicle control group (No.31)	Kidneys ^{c)}	Oil red O staining
125 mg/kg group (No.51)	Kidneys ^{c)}	Oil redO staining

c) Since vacuolization of the tubular epithelium suspected to be accumulation of fat was noted in the HE specimens of the 125 mg/kg group, Oil red O staining was done.

9. STATISTICAL ANALYSIS

Data regarding body weights (excluding those at the time of necropsy), food intakes, hematological examinations, blood chemical examinations, urine volume, urine specific gravity, organ weights, grip strength and locomotor activity counts were analyzed by using the Bartlett's test for homogeneity of variance. If the variances were homogeneous at a significance level of 5%, one way analysis of variance was performed. If there was a significant difference in this analysis, the difference between the vehicle control group and each of the treatment group was analyzed by the Dunnett's test. If the variances were not homogeneous, the Kruskal-Wallis's test was used. If there was a significant difference in this analyzed by the ontext's test.

The frequencies of defecation (number of feces) and urination (number of pools) were analyzed by using the Kruskal-Wallis's test. If there was a significant difference in this analysis, the difference between the vehicle control group and each of the treatment group was analyzed by the nonparametric Dunnett's test.

ENVIRONMENTAL FACTORS THAT MIGHT HAVE AFFECTED THE RELIABILITY OF STUDY RESULTS

One female (No.47) of the 25 mg/kg group died from administration malpractice on February 18, 2007. It was considered that the test results would be assessed by using other four survived animal. The evaluation of the test results was considered to be valid by using other four survived animals.

Although the protocol described Lot No. DPP3465 of Tween80 as vehicle, Lot No. DPK6694 was practically used. It was decided that the deviation from the protocol did not have affected the study results.

RESULTS

1. CLINICAL SIGNS (Table 1, Addendum 1)

1.1 During Dosing Period

Males: Salivation in 5-10 min after administration was noted in three animals (Nos. 1, 3 and 10) of the vehicle control group, in two animals (Nos. 13 and 14) of the 5 mg/kg group, in three animals (Nos. 16, 17 and 20) of the 25 mg/kg group and in all animals (Nos. 21-30) of the 125 mg/kg group, respectively. Decreased spontaneous locomotion in 5-10 min after administration was noted in one animal (No. 17) of the 25 mg/kg group and in four animals (Nos. 24, 25, 28 and 29) of the 125 mg/kg group, respectively. White turbid urine in one animal (No. 29) and exudates (neck) in one animal (No. 28) were noted in the 125 mg/kg group.

In addition, swelling of the third digit in the left forelimb was noted in one animal (No. 29) of the 125 mg/kg group. The digit was considered to be caught in the cage.

Females: Salivation in 5-10 min after administration was noted in two animals (Nos. 41 and 45) of the 5 mg/kg group, in all animals (Nos. 46-50) of the 25 mg/kg group and in all animals (Nos. 51-60) of the 125 mg/kg group, respectively. Decreased spontaneous locomotion in 5-10 min after administration in five animals (Nos. 53, 54, 56, 59 and 60) and staining lower abdomen in two animals (Nos. 58 and 59) were noted in the 125 mg/kg group.

In addition, one animal (No.47) of the 25 mg/kg group was dead on day 26.

1.2 During Recovery Period

- Males: Mottled teeth in all animals (Nos. 26-30), discoloration (whitish change) of the teeth in four animals (Nos. 26, 28-30), scab formation (neck) in one animal (No. 28) and exudates (neck) in one animal (No. 28) were noted in the 125 mg/kg recovery group. In addition, swelling of the third digit in the left forelimb was noted in one animal (No. 29) of the 125 mg/kg group.
- Females: Mottled teeth in all animals (Nos. 56-60), discoloration (whitish change) of the teeth in all animals (Nos. 56-60) and surface delamination of the tip of the lower incisors in two animals (Nos. 56 and 57) were noted in the 125 mg/kg recovery group.

2. DETAILED CLINICAL OBSERVATIONS (Table 2, Addendum 2)

2.1 During Dosing Period

- Males: A statistically significant increase in frequency of defecation was noted in the 25 mg/kg group in week 3 and week 4.
- Females: No abnormalities attributable to the test substance were noted in any treatment groups.

2.2 During Recovery Period

No abnormalities attributable to the test substance were noted in either sex of the 125 mg/kg recovery group.

3. SENSORIMOTOR FUNCTION (Tables 3, 4 and 5, Addenda 3, 4 and 5)

3.1 During Dosing Period

No abnormalities attributable to the test substance were noted in either sex of any treatment groups.

3.2 During Recovery Period

Males or females were not examined since no abnormalities attributable to the test substance were noted during the dosing period.

4. BODY WEIGHTS (Fig.1, Table 6, Addendum 6)

4.1 During Dosing Period

No statistically significant changes attributable to the test substance were noted in either sex of any treatment groups.

4.2 During Recovery Period

No statistically significant changes attributable to the test substance were noted in either sex of the 125 mg/kg recovery group.

5. FOOD INTAKES (Fig.2, Table 7, Addendum 7)

5.1 During Dosing Period

No statistically significant changes attributable to the test substance were noted in either sex of any treatment groups.

5.2 During Recovery Period

No statistically significant changes attributable to the test substance were noted in either sex of the 125 mg/kg recovery group.

6. HEMATOLOGICAL EXAMINATIONS (Table 8, Addendum 8)

6.1 At Termination of Dosing Period

No statistically significant changes attributable to the test substance were noted in either sex of any treatment groups.

6.2 At Termination of Recovery Period

Males: Statistically significant decreases in Hb and Ht were noted in the 125 mg/kg recovery group.

Females: No statistically significant changes attributable to the test substance were noted in the

125 mg/kg recovery group.

7. BLOOD CHEMICAL EXAMINATIONS (Table 9, Addendum 9)

7.1 At Termination of Dosing Period

- Males: Statistically significant increases in AST, ALT and ALP and a statistically significant decrease in T-Cho were noted in the 125 mg/kg group.
- Females: Statistically significant increases in γ -GTP, TG, albumin, A/G ratio and T-Bil and statistically significant decrease in ChE were noted in the 125 mg/kg group.

7.2 At Termination of Recovery Period

Males: No statistically significant changes attributable to the test substance were noted in the 125 mg/kg recovery group.

Females: A statistically significant decrease in IP was noted in the 125 mg/kg recovery group.

8. URINALYSES (Table 10, Addendum 10)

8.1 At Termination of Dosing Period

No abnormalities attributable to the test substance were noted in either sex of any treatment groups.

8.2 At Termination of Recovery Period

No abnormalities attributable to the test substance were noted in either sex of the 125 mg/kg recovery group.

9. ORGAN WEIGHTS (Tables 11 and 12, Addenda 11 and 12)

9.1 At Termination of Dosing Period

Males: Relative kidney weights were significantly increased in the groups given 25 mg/kg or more. Relative liver weight was significantly increased in the 125 mg/kg group.
Females: Statistically significant increases in absolute and relative weights of the liver and kidney were noted in the 125 mg/kg group.

9.2 At Termination of Recovery Period

- Males: Statistically significant increases in absolute heart weight, absolute and relative testis weight were noted in the 125 mg/kg group.
- Females: Statistically significant increases in relative liver weight and absolute brain weight were noted in the 125 mg/kg group.

10. NECROPSY (Table 13, Addendum 13)

10.1 Dead animal (No.47, female in the 25 mg/kg group)

Dark reddish change of the lung was noted.

10.2 At Termination of Dosing Period

- Males: Small and softening of the testis in one animal (No. 20) of the 25 mg/kg group, mottled teeth in two animals (Nos. 22 and 24) and enlargement of the liver in four animals (Nos. 21, 23-25) of the 125 mg/kg group were noted.
- Females: Mottled teeth in two animals (Nos. 51 and 55) and enlargement of the liver in all animals (Nos. 51-55) were noted in the 125 mg/kg group.

10.3 At Termination of Recovery Period

- Males: Mottled teeth were noted in all animals (Nos. 26-30) of the 125 mg/kg recovery group.
- Females: Mottled teeth in all animals (Nos. 56-60), rough surface of the incisor in one animal (No. 57) and aplasia of the left lobe of the thyroid in one animal (No. 59) were noted in the 125 mg/kg recovery group.

11. HISTOPATHOLOGICAL EXAMINATIONS (Table 14, Addendum 13)

11.1 Dead animal (No.47, female in the 25 mg/kg group)

Congestion and edema of the lung were noted.

11.1 At Termination of Dosing Period

Males: Cyst formation in the papillary layer of the incisor in one animal (No. 22), decreased iron pigments of the ameloblasts at the maturation stage in the incisor in three animals (Nos. 21, 22 and 25), irregular alignment of the ameloblasts at the maturation stage in the incisor in one animal (No. 25), periportal hypertrophy of the hepatocytes in the liver in all animals (Nos. 21-25), periportal prominent nucleoli of the hepatocytes in the liver in three animals (Nos. 21, 22, 24), single cell necrosis of the hapatocytes in the liver in one animal (No. 25), dilatation of the tubules in the kidney in one animal (No. 25), basophilic tubules in the kidney in one animal (No. 25), basophilic tubules in the kidney in one animal (No. 25) and focal myocarditis in the heart in one animal (No. 21) were noted in the 125 mg/kg group.

In addition, basophilic tubules in the kidney in two animals (Nos. 2 and 5), focal hyperplasia of the tubular epithelium in the kidney in one animal (No. 3) and focal myocarditis in the heart in one animal (No. 1) and round cell infiltration in the prostate in one animal (No. 3) were noted in the vehicle control group. Diffuse atrophy of the seminiferous tubules and Leydig cell hyperplasia in the testis were noted in one animal (No. 20) of the 25 mg/kg group.

Females: Cyst formation in the papillary layer of the incisor in one animal (No. 54), decreased iron pigments of the ameloblasts at the maturation stage in the incisor in two animals (Nos. 53 and 54), irregular alignment of the ameloblasts at maturation stage in the incisor in one animal (No. 54), diffuse hypertrophy of the hepatocytes in the liver in

two animals (Nos. 53 and 54), ballooning of the tubular epithelium in the kidney in one animal (No. 51), necrosis of the squamaous epithelium in the limiting ridge of the forestomach in one animal (No. 54) were noted in the 25 mg/kg group.

In addition, mineralization in the cortico-medullary junction of the kidney in two animals (Nos. 32 and 33), necrosis of the squamaous epithelium in the limiting ridge of the forestomach in one animal (No. 34), endometrial atrophy of the uterus in one animal (No. 31), mucification of the epithelium in the vagina in one animal (No. 31) and vaginitis of the vagina in one animal (No. 34) were noted in the vehicle control group. Mineralization in the cortico-medullary junction of the kidney was noted in one animal (No. 45) of the 5 mg/kg group.

As the result of the oil red O staining for the kidney in one female (No. 51) of the 125 mg/kg group, no positive substance was found in the vacuolating area of the tubular epithelium. Therefore, this histopathological finding was "ballooning of tubular epithelium" since the vacuolization was not caused by the accumulation of the fat.

11.2 At Termination of Recovery Period

- Males: Irregular alignment of the ameloblasts at the maturation stage in the incisor in two animals (No. 28 and 30), basophilic tubules in the kidney in one animal (No. 30) and solitary cyst in the medulla of the kidney in one animal (No. 26) were noted in the 125 mg/kg recovery group.
- Females: Irregular alignment of the papillary layer in the incisor in one animal (No. 57), decreased iron pigments of the ameloblasts at the maturation stage in the incisor in one animal (No. 58) and irregular alignment of the ameloblasts at the maturation stage in the incisor in three animals (No. 57, 58 and 60) were noted in the 125 mg/kg recovery group.

In addition, mineralization in the cortico-medullary junction of the kidney in two animals (Nos. 37 and 38) of the vehicle control recovery group and aplasia of the left lobe in the thyroid in one animal (No. 59) of the 125 mg/kg recovery group were noted.

DISCUSSION

A 28-day repeated-dose oral toxicity study of with Crl:CD(SD) rats was carried out at doses of 5, 25, and 125 mg/kg/day. A 14-day recovery test was also performed to investigate the reversibility of the effects.

One female in the 25 mg/kg group died during the dosing period. In the histopathological examinations, congestion and edema in the lung were observed. Therefore, it was decided that the

death was due to administration malpractice.

No abnormalities were observed in the sensorimotor function, body weights or food intakes during the dosing period. In addition, no abnormalities were observed in the hematological examinations or the urinalyses at the end of the dosing period.

The test substance caused changes suggesting effects on the incisor, liver, and kidney. In the histopathological examinations of the incisor, decreased iron pigments and irregular alignment of the ameloblasts at the maturation stage and cyst formation in the papillary layer were observed in both sexes of the 125 mg/kg group. In the necropsy, mottled teeth were observed in both sexes. These changes suggested the effects on the enamel of the incisor due to the test substance. It was also reported that decreased iron pigments, degeneration and necrosis of the ameloblasts were found in the animals including rats with brown enamel surface of the teeth when dosed to fluoride¹⁾²⁾. Therefore, it was suggested that these changes were caused by the fluorine in the test substance.

In the histopathological examinations of the liver, periportal hypertrophy, periportal prominent nucleoli and single cell necrosis of the hepatocytes in males and diffuse hypertrophy of the hepatocytes in females were observed in the 125 mg/kg group. In the necropsy, enlargement of the liver was observed in both sexes of the 125 mg/kg group. These suggest the change of the liver function caused by the test substance. As the related changes, relative liver weight in males and absolute and relative liver weights in females were increased in the 125 mg/kg group. In the blood chemical examinations, increased levels of AST, ALT and ALP and decreased level of T-Cho were found in males of the 125 mg/kg group. In females of the same group, increased levels of γ -GTP, TG, Albumine, A/G ratio and T-Bil and decreased level of ChE were found. In the histopathological examinations of the kidney, dilatation of the tubules in males and ballooning of the tubular epithelium in females were observed in the 125 mg/kg group as a small number of cases. Furthermore, relative kidney weights in the males given 25 mg/kg or more and absolute and relative kidney weights in the females given 125 mg/kg were increased. These suggest the effects of the test substance on the kidney. As for the change of the tubular epithelium, oil red O stain revealed that no positive substance was found in the vacuolating area of the tubular epithelium, indicating that the vacuolization was not caused by the accumulation of the fat.

In the clinical signs, salivation was observed in both sexes given 5 mg/kg or more (5-10 min after administration), indicating transient observation immediately after administration. In the histopathological examinations, no change related to the irritation was observed in the stomach. No change related to the neural system was observed in the detailed clinical observations or the sensorimotor function. Therefore, this change was considered to be no toxicologically significance. In addition, decreased spontaneous locomotion in males given 25 mg/kg or more and in females given

B11-0836

125 mg/kg was observed. However, this was observed during 5-10 min after administration, indicating a transient change. No related change was observed in the detailed clinical observations or the sensorimotor function. Therefore, this change was considered to be no treatment related. Although staining lower abdomen was observed in females of the 125 mg/kg group, this occurred singly in one animal on each day 8 and 22. Therefore, this change was considered to be no treatment related. White turbid urine was observed in one male of the 125 mg/kg group. However, this occurred only on day 15, and no abnormalities in the urinary organs including the kidney were observed in the histopathological examinations. Therefore, this change was considered to be no treatment related. In addition, exudate was observed in male of the 125 mg/kg group. However, this was observed in the neck of one animal. Therefore, it was considered that this change was not caused by the test substance, but handling of the rat. Furthermore, swelling of the digit in the left forelimb was observed in one animal of the 125 mg/kg group because the digit was caught in the cage. Therefore, this change was considered to be no treatment related.

In the detailed clinical observations, the number of the defecation was increased in males of the 25 mg/kg group on week 3 and 4, however, no dose-related change was found. Therefore, this was considered to be no treatment related.

In the histopathological examinations, basophilic tubules of the kidney in males, focal myocarditis of the heart in males, and necrosis of the squamous epithelium in the limiting ridge of the forestomach in females were observed in the 125 mg/kg group. In addition, mineralization in the cortico-medullary junction of the kidney was observed in females of the 5 mg/kg group. However, these changes were also observed in the vehicle control group. Therefore, this change was considered to be no treatment related. In addition, diffuse atrophy of the seminiferous tubules and Leydig cell hyperplasia in the testis were observed in males of the 25 mg/kg group. In the animal, small and softening of the testis were observed in the necropsy. However, this was observed in only one animal and no dose-related change was found. Therefore, this was considered to be no treatment related.

In the recovery group, histopathological changes of the incisor remained in both sexes as the treatment related changes during the recovery period. In the clinical signs, mottled teeth, discoloration (whitish change) of the teeth and surface delamination of the tip of the lower incisors were newly observed during the recovery period. In the necropsy, rough surface of the incisor was observed. It was suggested that these changes were caused by the fluoride as described above. Therefore, it was presumed that these changes would gradationally disappear with elongation of the incisor in the course of the recovery period. Although increased relative liver weight remained in females, the degree diminished. In addition, increased absolute liver weight and histological changes found at the end of the dosing period disappeared at the end of the recovery period. Therefore, these changes were considered to be reversible.

In the hematological examinations, decreased levels of Hb and Ht were found in males of 125 mg/kg recovery group, however, these changes were not found at the end of the dosing period, and these values were also within the range of the historical data³⁾. Therefore, these changes were considered to be incidental. In the blood chemical examinations, IP level was newly increased in the females of the 125 mg/kg recovery group, however, this value was also within the range of the historical data⁴). Therefore, this change was considered to be incidental. As for the organ weights, relative heart weight and absolute and relative testes weights were increased in males of the 125 mg/kg recovery group. In addition, increased absolute brain weight was observed in females of the 125 mg/kg recovery group. However, no histological abnormalities in these organs were observed at the end of the recovery period. Furthermore, no changes in these organ weights were observed at the end of dosing period. Therefore, these changes were considered to be no treatment related. In addition, aplasia of the left lobe of the thyroid was found macroscopically and histologically in one female of However, it was considered that the change was not the 125 mg/kg recovery group. treatment-related, but congenital. In the histopathological examinations, solitary cyst in the medulla of the kidney was observed in one male of the 125 mg/kg recovery group. However, this change has been found in historical data⁵). Therefore, this was considered to be an incidental change.

In conclusion, it was considered that had mainly effects on the incisor, liver, and kidney. considered The However, it also that these changes reversible. was were No-Observed-Adverse-Effect Level (NOAEL) of was considered to be 5 mg/kg/day based on increased relative kidney weights in the male given 25 mg/kg or more.

- 1)
- 2)

1995, Study on Physiology and Pharmacology in Hard Tissue -Effects of chemicals on formation and resorption mechanism of tooth and bone-

3) Historical data of hematological examinations of Crl:CD(SD) rats in the second second (11-13 weeks old)

Vehicle: olive oil

Items	Sex	n	Mean	Mean-2S.D.	Mean+2S.D.
Hb (g/dL)	male	186	15.8	14.8	16.8
Ht(%)	male	186	46.8	43.6	50.0

n: number of animals examined.

4) Historical data of blood chemical examinations of Crl:CD(SD) rats in (11-13 weeks old)

Vehicle: olive oil

--

.

Items	Sex	n	Mean	Mean-2S.D.	Mean+2S.D.
IP (mg/dL)	female	186	6.3	4.9	7.7

n: number of animals examined.

5) Historical data of histopathology of Crl:CD(Sl	D) rats in	(9-16 weeks old)
Items	Sex	Incidence
Solitary cyst in the medulla of the kidney	male	12/484

- 28 -

÷

- 29 -

B11-0836 14 (days) Q ۵ O : Vehicie control □ 5 mg/kg/day □ : 25 mg/kg/day ○ : 125 mg/kg/day Recovery 8 ¥ 58 γ Twenty-eight-day repeated-dose oral toxicity study in rats Food intakes : Female 22 Administration 15 Fig. 2-2 $\mathbf{1}$ ₫¢ 40-30-20-10-5 (veb / 1 at / 3)

Sex	Signs				Recovery Period					
		- mg/kg/day	VC	VC (R)	5	25	125	125 (R)	vc	125
Male	, , , , , , , , , , , , , , , , , , , 		ta 5*)	ta 5	ta. S	ta	ta	ta	ta 5	ta
No	abnormalities detected		3	4	3	2		<u>_</u>	5	
Sal	livation	<u> </u>	2	1	2	3	5	5		
Dec	creased spontaneous locomotio	n				1	2	2		
Sw	elling of third digit in left forel	imb						1		1
Wh	hite turbid urine							1	······	
Ext	udate(neck)				··· ···			1		1
Sca	ab formation(neck)									1
Mo	ottled teeth	•								5
WI	hitish change of teeth									4
Female	;	<u></u>	ta 5	ta 5	ta 5	ta 5	ta 5	ta 5	ta 5	ta 5
No	o abnormalities detected	······································	5	5	3				5	
Sa	livation		•		2	5	5	5	*	
De	ecreased spontaneous locomotio	מכ					2	3		
Sta	aining lower abdomen	*****			******		******	2		
M	lottled teeth		······							5
W	hitish change of teeth			*****					······································	5
Su	urface delamination of tip lower	inisores								2
De	eath					1				

. .

Table 1 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of clinical signs

a) Number of animals examined. VC, Vehicle control; (R), Recovery ta, terminal autopsy.

Bil-0836

.

.

Table 2 Twenty-eight-day repeated-dose oral toxicity study in rats

Summary of detailed clinical observations (scoring scale for detailed clinical observations)

REMOVAL FROM CAGE	
Ease of removal	
-2	No reaction
-1	Very easy
0	Easy (slight resistance)
+1	Difficult
+2	Very difficult
Vocalizati on	
0	None
+1	Vocalization during handling
+2	Continuous vocalization
HANDLING OBSERVATIONS	
Muscle tone	
-1	Decreased
0	Normal
+1	Increased
Subnormal temperature	
•	Absent
+	Present
Pilocrection	
-	Absent
+	Present
Staining hair	
~	Absent
+	Present
Unkempt hair	
-	Absent
+	Present
Paleness	
-	Absent
+	Present
Reddening	
-	Absent
+	Present
Cyanosis	
-	Absent
+	Present
Lacrimation	
-	Absent
+	Present

Table 2 Twenty-eight-day repeated-dose oral toxicity study in rats

B11-0836

.

Summary of detailed clinical observations (scoring scale for detailed clinical observations)

· · ·		
HANDLING OBSERVATIONS-continue	:d	
Exophthalmos		
-	Absent	
+	Present	
Pupillary size		
-1	Miosis	
0	Normal	
+1	Mydriasis	
Salivation		
-	Absent	
+	Present	
Secretion		
-	Absent	
۰ŧ۰	Present	

OBSERVATIONS IN ARENA

.

-

Posture	
0	Normal
+1	Crouching position or hunchback position
+2	Prone position or lateral position
Motor activity	
-2	Significantly decreased
-1	Decreased
0	Normal
+1	Increased
+2	Significantly increased
Respiration	
0	Normal
+1	Slightly insufficiency
+2	Moderately insufficiency
+3	Severely insufficiency
Lid closure	
-	Absent
+	Present
Gait	
-	Normal
S	Staggering gait
Т	Tiptoe gait
Р	Shuffling (paralytic) gait
GD	Gait disturbance

•

Table 2 Twenty-eight-day repeated-dose oral toxicity study in rats

B11-0836

Summary of detailed clinical observations (scoring scale for detailed clinical observations)

OBSERVATIONS IN ARENA-continued	
Tremor/twitch/convulsion	
0	None
+1	Tremor
+2	Twitch or convulsion
+3	Systematic tonic convulsion (opisthotonus or episthotonus etc.)
Stereotypic behavior	
50	None
С	Circling
G	Grooming
S	Sniffing
н	Head bobbing
Abnormal behavior	
-	None
S	Self-biting
В	Backing
С	Circling
R	Rolling
W	Writhing
v	Vocalization
ST	Straub tail
<u> </u>	Tail lashing behavior

							Ren	noval from	cage		
Sex	Period	Exp. group	Number of		Eas	se of rem	oval	- <u>-</u>	ν	ocalizati	ion
		(mg/kg/day)	animals	-2	-1	0	+1	+2	0	+1	+2
		Vehicle control	10	0	0	10	0	0	8	2	0
	Decidentian	5	5	0	0	5	0-	0	4	I	0
	Predosing	25	5	0	0	5	0	0	5	0	0
		125	10	0	0	9	1	0	10	0	0
		Vehicle control	10	0	0	10	0	0	7	3	0
	week 1	5	5	0	0	5	0	0	4	1	0
		25	5	0	0	5	0	0	4	1	0
		125	10	0	0	10	0	0	10	0	0
		Vehicle control	10	0	0	10	0	0	9	1	0
	mark 2	5	5	0	0	5	0	0	4	1	0
	WCCK 2	25	5	0	0	5	0	0	5	0	0
Mala		125	10	0	0	10	0	0	10	0	0
IVIAIC		Vehicle control	10	0	0	10	0	0	8	2	0
		5	5	0	0	5	0	0	5	0	0
	WCCK J	25	5	0	0	5	0	0	5	0	0
	•	125	10	0	0	10	0	0	10	0	0
		Vehicle control	10	0	0	10	0	0	8	2	0
	woold A	5	5	0	0	5	0	0	4	1	0
	WCCK4	25	5	0	0	5	0	0	5	0	0
		125	10	0	Ó	10	0	0	10	0	0
	Recovery	Vehicle control	.5	0	0	5	0	0	5	0	0
	week 1	125	5	0	0	5	0	0	5	0	0
	Recovery	Vehicle control	5	0	0	5	0	0	4	1	0
	week 2	125	5	0	0	5	0	0	5	0	0

•

Table 2-1 Twenty-eight-day repeated-dose oral toxicity study in rats

B11-0836

		<u></u>		Removal from cage								
Sex	Period	Exp. group	Number of		Eas	e of rem	oval		Vocalization			
		(mg/kg/day)		-2	-1	0	+1	+2	0	+1	+2	
144		Vehicle control	10	0	0	10	0	0	9	1	0	
	Das de sin m	5	5	0	0	4	. 1	0	3	2	0	
	Predosing	25	5	0	0	5	0	0	3	2	0	
		125	10	0	0	10	0	0	10	0	0	
		Vehicle control	10	0	0	10	0	0	8	2	0	
	week 1	5	5	0	0	5	0	0	3	2	0	
		25	5	0	0	5	0	0	4	1	0	
		125	10	0	1	8	1	0	9	1	0	
		Vehicle control	10	0	0	10	0	0	6	4	0	
	weate 3	5	5	0	0	5	0	0	5	0	0	
	week 2	25	5	0	0	5	Ø	0	2	3	0	
Francis		125	10	. 0	0	10	Q	0	9	1	0	
remaie	week 3	Vehicle control	10	0	0	10	0	0	7	3	0	
		5	5	0	0	5	0	0	3	2	0	
		25	5	0	0	5	0	0	5	0	0	
		125	10	0	0	10	0	0	10	0	0	
		Vehicle control	10	0	0	10	0	0	7	3	0	
	march A	5	5	0	0	5	0	0	4	1	0	
	week 4	25	4	0	0	4	0	0	3	1	0	
		125	10	0	0	10	0	0	10	0	0	
	Recovery	Vehicle control	5	0	0	.5	0	0	4	1	0	
	week 1	125	5 [.]	0	0	5	0	0	5	0	0	
	Recovery	Vehicle control	5	0	0	5	0	0	3	2	0	
	week2	125	5	0	0	5	0	0	4	1	0	

Table 2-2 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

Table 2-3	Twenty-eight-day repeated-dose oral toxicity study in rats
	Summary of detailed clinical observations

						1	Handling observ	ations		
Sex	Period	Exp. group	Number of	M	luscle tor	ne	Subnormal t	empera ture	Piloere	ction
		(mg/kg/day)	animals	-)	0	+]	-	+	-	+
		Vehicle control	10	0	10	0	10	0	10	0
	Predocina	5	5	0	5	0	5	0	5	0
	ricuosaig	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
		Vehicle control	10	0	10	0	10	0	10	0
	week 1	5	5	0	5	0	5	0	5	0
	WCCK I	25	5	0	5	0	5	0	5	0
	<u> </u>	125	10	0	10	0	· 10	0	10	0
		Vehicle control	10	0	10	0	10	0	10	0
	week?	5	5	0	5	0	5	0	5	0
		25	5	0	5	0	5	0	5	0
Mala		125	10	0	10	0	10	0	10	0
IVIAIC	······························	Vehicle control	10	0	10	0	10	0	10	0
	made 2	5	5	0	5	0	5	0	5	0
	WCCK J.	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
		Vehicle control	10	0	10	0	10	0	10 .	0
	week A	5	5	0	5	0	5	0	5	0
	WCCA 4	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	Recovery	Vehicle control	5	0	5	0	5	0	5	0
	week 1	125	5	0	5	0	5	0	5	0
	Recovery	Vehicle control	5	0	5	0	5	0	5	0
	week 2	125	5	0	5	0	5	0	5	0

]	Handling observ	ations		
Sex	Period	Exp. group	Number of	М	luscle ton	e	Subnormal te	mperature	Piloere	ction
		(mg/kg/day)	animals	-1	0	+1	-	+	-	4
		Vehicle control	10	0	10	0	10	0	10	0
	Dradooina	5	5	0	5	0	5	0	5	0
	ricoosnig	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	weck 1	Vehicle control	r 10	0	10	0	10	0	10	0
		5	5	0	5	0	5	0	5	0
		25	5	Ö	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	•	Vehicle control	10	0	10	0	10	0	10	0
	week ?	5	5	0	5	0	5	0	.5	0
	WOOK 2	25	5	0	5	0	5	0	5	0
Female		125	10	0	10	0	10	0	10	0
reman	weak 3	Vehicle control	10	0	10	0	10	0	10	0
		5	5	0	5	0	5	0	5	0
	MAAK J	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
		Vehicle control	10	0	10	0	10	0	10	0
	weekA	5	5	0	5	0	5	0	5	0
	WCCV4	25	4	0	4	0	4	0	4	0
		125	10	0	10	0	10	0	10	0
	Recovery	Vehicle control	5	0	5	0	5	0	5	0
	week 1	125	5	0	5	0	5	0	5	0
	Recovery	Vehicle control	5	0	5	0	5	0	5	0
	week 2	125	5	0	5	0	5	0	5	0

Table 2-4 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

B11-0836

.

						Н	andli.ng ol	servations	;		
Sex	Period	od Exp. group	Number of	Stainin	g hair	Unkem	pt hair	Paleness		Reddening	
		(mg/kg/day)	animals .	*	+	-	+		+	~	+
		Vehicle control	10	10	0	10	0	10	0	10	(
	Dectorium	5	5	5	0	5	0	5	0	5	(
	rredosing	25 ·	5	5	0	5	0	5	0	5	(
		125	10	10	0	10	0	10	0	10	(
		Vehicle control	10	10	0	10	0	10	0	10	(
	week 1	5	5	5	0	5	0	5	0	5	(
		25	5	5	0	5	0	5	0	5	i
		125	10	10	0	10	0	10	0	10	(
		Vehicle control	10	10	0	10	0	10	0	10	
		5	5	5	0	5	0	5	0	5	
	week Z	25	5	5	0	5	0	5	0	5	
1 - In		125	10	10	0	10	0	10	0	10	
Mae		Vehicle control	10	10	0	10	0	10	0	10	
	munate 7	5	5	5	0	5	0	5	0	5	
	week 3	25	5	5	0	5	0	5	0	5	
		125	10	10	0	10	0	10	0	10	
		Vehicle control	10	10	0	10	0	10	0	10	
	umak 4	5	5	5	0	5	0	5	0	5 ·	
	week4		_					_			

Table 2-5 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

Vehicle control

Vehicle control

Recovery week 1

Recovery week2 · 0

Table 2-6	Twenty-eight-day repeated-dose oral toxicity study in rats
	Summary of detailed clinical observations

١,

-

						Н	andling ol	servations	5		
Sex	Period	Exp. group	Number of	Stainin	g hair	Unkem	pt hair	Paler	ress	Redde	ning
		(mg/kg/day)	animals	-	+	*	+	-	+	-	+
		Vehicle control	10	10	0	10	0	10	0	10	0
	Predocing	5	5	5	0	5	0	5	0	5	0
	Troubailig	25	5	5	0	5	0	5	0.	5	0.
		. 125	10	10	0	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0	10	0
	week 1	5	5	5	0	5	0	5	0	5	0
	WCCK I	25	5	5	0	5	0	5	0	5	0
		125	10	10	0	10	0	10	0	10.	0
		Vehicle control	-10	10	0	10	0	10	0	10	0
	mark ?	5	5	5	0	5	0	5	0	5	0
	WEEK Z	25	5	5	0	5	0	5	0	5	0
Female		125	10	10	0	10	0	10	0	10	0
1. cutate		Vehicle control	10	10	0	10	0	10	0	10	0
	mode 7	5	5	5	0	5	. 0	5	0	5	0
	WEEK J	25	5	5	0	5	0	5	0	5	0
		125	10	10	0	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0	10	0
	week A	5	5	5	0	5	0	5	0	5	0
	WOCK 4	25	4	4	0	4	0	4	0	4	0
		125	10	10	0	10	0	10	0	10	0
	Recovery	Vehicle control	5	5	0	5	0	5	0	5	0
	week 1	125	.5	5	0	5	0	5	0	5	0
	Recovery	Vehicle control	5	5	0	.5	0	5	0	5	0
	week 2	125	5	5	0	5	0	5	0	5	0

					ł	landling ob	servatio	ns	
Sex	Period	Exp. group	Number of	Cyan	osis	Lacrim	ation	Exophth	naimos
		(mg/kg/day)	animals	-	+		+	-	+
		Vehicle control	10	10	0	10	0	10	0
	Bradasina	5	5	5	0	5	0	5	0
	ricuosing	25	5	5	0	5	0	5	0
		125	10	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0
	unate 1	5	5	5	0	5	0	5	0
	WCCK I	25	5	5	0	5	0	5	0
		125	10	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0
	maak 7	5	5	5	0	5	0	5	0
	WCCK 2	25	5	5	0	5	0	5	0
Molo		125	10	10	0	10	0	10	0
Maic		Vehicle control	10	10	0	10	0	10	0
	monte 2	5	5	5	0	5	0	5	0
	WCCK J	25	5	5	0	5	0	5	0
		125	10	10	0	10	0	10	0
		Vehi cle control	10	10	0	10	0	10	0
	mode 4	5	5	5	0	5	0	5	0
	WCCK 4	25	5	5	0	5	0	5	0
		125	10	10	0	10	0	10	0
	Recovery	Vehicle control	5	5	0	5	0	5	0
	week i	125	. 5	5	0	5	0	5	0
	Recovery	Vehicle control	5	5	0	5	0	5	0
	week 2	125	5	5	0	5	0	5	0

Table 2-7 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

BII-0836

.

•					1	landling ol	bservatio	ns	
Sex	Period	Ехр. group	Number of	Cyan	osis	Lacrin	ation	Exophti	nalmos
		(mg/kg/day)	animals	•	· +		+	-	+
		Vehicle control	10	10	0	10	0	10	0
	Drodenie –	5	5	5	0	5	0	5	0
	rieuosing	25	5	5	0	5	0	.5	0
		125	10	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0
	woold 1	5	5	5	0	5	0	5	0
	WEEK 1	25	5	5	0.	5	0	5	0
		125	10-	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0
	umate 2	5	5	5	0	5	0	5	0
	WEEK Z	25	- 5	5	0	5	0	5	0
Famala		125	10	10	0	10	0	10	0
remaic		Vehicle control	10	10	Ó	10	0	10	0
		5	5	5	0	5	0	5	0
	WCCKJ	25	5	5	0	5	0	5	0
		125	10	10	0	10	0	10	0
		Vehicle control	10	10	0	10	0	10	0
	unali A	5	5	5	0	5	0	5	0
	WEEK 4	25	4	4	0	4	0	4	0
		125	10	10	0	10	0	10	0
	Recovery	Vehicle control	5	5	0	5	0	5	0
	week 1	125	5	5	0	5	0	5	0
, w	Recovery	Vehicle control	5	5	0	5	0	5	. 0
	week 2	125	5	5	0	5	0	5	0
And the second s				and the second s	the second s	the second s			the second second

Table 2-8 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

	<u> </u>					Hand	ling observ	ations	- <u></u>	
Sex	Period	Exp. group	Numberof	Pu	pillary si	ze	Saliv	ation	Secre	tion
	PeriodExp. group (mg/kg/day)Predosing52525125125Week 125125125Week 25125125Week 25125125Week 35125125Week 45125125Week 45125125RecoveryVehicle contentsWeek 1125RecoveryVehicle contentsWeek 2125	(mg/kg/day)	animals	-1	0	+1	•	+	~	+
		Vehicle control	10	0	10	0	10	0	10	0
	Duodosina	5	.5	0	5	0	5	0	5	0
	Freuosing	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	•	Vehicle control	10	0	10	0	10	0	10	0
	woole 1	5	5	0	5	0	5	0	5	0
	week I	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	<u></u>	Vehicle control	10	0	10	0	10	0	10	0
		.5	5	0	5	0	5	0	5	0
	WEEK Z	25	5	0	5	0	5	0	5	0
Mala		125	10	0	10	0	10	0	10	0
IAISIC	<u></u>	Vehicle control	10	0	10	0	10	Q	10	0
		5	5	0	5	0	5	0	5	0
	Weeks	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	<u>,</u>	Vehicle control	10	0	10	0	10	0	10	0
	work A	5	5	0	5	0	5	0	5	0
	WCCK 4	25	5	0	5	0	5	0	5	0
		125	10	0	10	0	10	0	10	0
	Recovery	Vehicle control	5	0	5	0	5	0	5	0
	week 1	125	. 5	0	5	0	5	0	5	0
	Recovery	Vehicle control	5	0	5	0	5	0	5	0
	week 2	125	5	0	5	Ò	5	0	5	0

Table 2-9 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

Bil-0836

Table 2-10 Twenty-eight-day repeated-dose oral toxicity study in rats

Bil-0836

						Hand	ling observ	ations		
Sex	Period	Exp. group	Number of	Pu	pillary si	ze	Saliv	ation	Secre	tion
		(mg/kg/day)	animals	-1	0	+1		+	**	+
		Vehicle control	10	0	10	0	10	0	10	0
	Des de sine	5	5	0	5	0	5	0	5	C
	rreuosing	25	5	0	5	0	5	0	.5	(
-		125	10	0	10	0	10	0	10	Ċ
		Vehicle control	10	0	10	0	10	0	10	(
	mark 1	5	5	0	5	0	5	0	5	(
	Week 1	25	5	0	5	0	5	0	5	(
		125	10	0	10	0	10	0	10	(
	*	Vehicle control	10	0	10	0	10	0	10	(
		5	5	0	5	0	5	0	5	1
	Week 2	25	5	0	5	0	5	0	5.	4
		125	10	0	10	0	10	0	10	
emale	terrestations -	Vehicle control	10	0	10	0	10	0	10	
		5	5	0	5	0	5	0	5	i
	Week 3	25	5	0	5	0	5	0	5	
		125	10	0	10	0	10	0	10	
		Vehicle control	10	0	10	0	10	0	10	
		5	5	0	5	0	.5	0	5	
	Week 4	25	4	0	4	0	4	0	4	
		125	10	0	10	0	10	0	10	
	Recovery	Vehicle control	5	0	5	0	5	0	5	
	week 1	125	5	0	5	. 0	5	0	5	
	Recovery	Vehicle control	5	0	5	0	5	0	5	
	week 2	125	5	0	5	0	5	0	5	

_

						Ob	servations	in arena	L		
Sex	Period	Exp. group	Number of		Posture			М	otor activ	vity	
		(mg/kg/day)	animals	0	+1	+2	-2	-1	0	+1	+2
		Vehicle control	10	10	0	0	0	0	10	0	0
	Vinada ain a	5	5	5	0	0	0	0	5	0	0
	riedosnig	25	5	5	0	0	0	0	5	0	0
		125	10	· 10	0	. 0	0	0	8	2	0
		Vehicle control	10	10	0	0	0	0	10	0	0
	waste 1	5	5	5	0	0	0	0	5	0	0
	WCCK I	25	5	5	0	0	0	0	4	1	0
		125	10	10	0	0	0	0	10	0	0
	· · · · · · · · · · · · · · · · · · ·	Vehicle control	10	10	0	0	0	0	10	0	0
	manle D	5	5	5 ·	0	0	0	0	5	0	0
	WECK Z	- 25	5	5	0	0	0	0	4	1	0
Mala		125	10	10	0	0	0	0	9	1	0
Maic		Vehicle control	10	10	· 0	0	0	0	9	1	0
		5	5	5	0	0	0	0	5	0	0
	Week 3	25	5	5	0	0	. 0	1	4	0	0
		125	10	10	0	0	0	0	10	0	0
•		Vehicle control	10	10	0	0	0	0	10	0	0
		.5	5	5	0	0	0	0	5	0	0
	week4	25	5	5	0	0	0	0	5	0	0
		125	10	10	0	0	0	0	10	0	0
	Recovery	Vehicle control	5	5	0	0	0	0	5	0	0
	week 1	125	5	5	0	0	0	• 0	5	0	0
	Recovery	Vehicle control	5	5	0	0	0	0	3	2	0
	week 2	125	5	5	0	0	0	0	4	1	0

Table 2-11 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

						Ob	Observations in arena						
Sex	Period	Exp. group	Number of		Posture	:		M	otor activ	ity			
		(mg/kg/day)	animals	0	+1	+2	-2	-1	0	+]	+2		
		Vehicle control	10	10	0	0	0	0	10	0	0		
	Decidaria	5	5	5	0	0	0	0	4	1	0		
	Freuosing	25	5	5	0	0	0	0	4	1	0		
	•	125	10	10	0	0	0	0	9	1	0		
		Vehicle control	10	10	0	0	0	0	8	2	0		
	woods 1	5	5	5	0	0	0	0	4	1	0		
	WEER I	25	5	5	0	0	0	0	5	0	0		
		125	10	10	0	0	0	0	10	0	0		
		Vehicle control	10	10	0	0	0	0	9	1	0		
	week?	5	5	5	0	0	0	0	5	0	0		
	WCCK2	25	5	5	0	0	0	0	5	0	0		
Female		125	10	10	0	0	0	0	10	0	0		
I CHAR		Vehicle control	10	10	0	0	0	0	10	0	0		
	week 3	5	5	5	0	0	0	0	4	1	0		
	WEEK 5	25	5	5	0	0	0	0	5	0	0		
	1	125	10	10	0	0	0	0	10 .	0	0		
		Vehicle control	10	10	0	0	0	0	10	0	0		
	week A	5	5	5	0	0	0	0	5	0	0		
	WOOR 7	25	4	4	0	0	0	0	4	0	0		
		125	10	10	0	0	0	0	10	0	0		
	Recovery	Vehicle control	5	5	0	0	0	0	5	0	0		
	week 1	125	5	5	0	0	0	0	5	0	0		
	Recovery	Vehicle control	5	5	0	0	0	0	5	0	0		
	week 2	12.5	5	5	0	0	0	0	4	1	0		

Table 2-12 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

....

Summary of detailed clinical observations Observations in arena Respiration Lid closure Sex Period Exp. group Number of +1 +3 ani mals +2 (mg/kg/day) -+ Vehicle control Predosing Vehicle control week 1 Vehicle control week 2 Male Vehicle control Q week 3 Ö Vehicle control Q week 4 Vehicle control Recovery week 1 Vehicle control Recovery week 2

Table 2-13 Twenty-eight-day repeated-dose oral toxicity study in rats

	Summary of o	detailed clinical ob	servations						
					(Observati	ons in are	na	
Sex	Period	Exp. group	Number of		Resp	iration		Lid cl	osure
		(mg/kg/day)	animals	0	+1	+2	+3	-	+
·····		Vehicle control	10	10	0	0	0	10	0
	Decelorium	5	5	5	0	0	0	5	0
	ricuosing	25	5	5	0	0	0	5	0
		125	10	10	0	0	0	10	0
		Vehicle control	10	10	0	0	0	10	0
	week 1	5	5	5	0	0	0	5	0
	WCCK I	25	5	5	0	0	0	5	0
		125	10	10	0	0	0	10	0
		Vehicle control	10	10	0	0	0	10	0
	week ?	5	5	5	0	0	0	5	0
	WCCK 2	25	5	5	0	0	0	5	0
Female		125	10	10	0	0	0	10	0
remare		Vehicle control	10	10	0	0	0	10	0
	week 3	5	5	5	0	0	0	5	0
	With J	25	5	5	0	0	0	5	0
		125	10	10	0	0	0	10	0
		Vehicle control	10	10	0	0	0	10	0
	week 4	5	5	5	0	0	0	5	0
•	WOOR T	25	4	4	0	0	0	4	0
		125	10	10	0	0	0	10	0
	Recovery	Vehicle control	5	5	0	0	0	5	0
	week 1	125	5	5	0	0	0	5	0
	Recovery	Vehicle control	5	5	0	0	0	5	0
	week 2	125	5	5	0	0	0	5	0

Table 2-14 Twenty-eight-day repeated-dose oral toxicity study in rats

BII-0836

4377

	,				Observ	ations in	arena	
Sex	Period	Exp. group	Number of			Gait		
		(mg/kg/day)	animals	-	S	Т	P	GD
		Vehicle control	10	10 -	0	0	0	0
	Prodosina	5	5	5	0	0	0	0
	ricuosnig	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	masle 1	5	5	5	0	0	0	0
	WOCK I	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	unale 2	5	5	5	0	0	0	0
	WCCK 2	25	5	5	0	0	0	0
Mala		125	10	10	0	0	0	0
MIGIC		Vehicle control	10	10	0	0	0	0
	mode 7	5	.5	5	0	0	0	0
	week 5	25	5	5	0	0	0	0
	·	125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	and to A	5	5	5	0	0	0	0
	WCCK 4	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 1	125	5	5	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 2	125	5	5	0	0	0	0

Table 2-15 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

Table 2-16 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

					Observ	ations in	arena	
Sex	Period	Exp. group	Number of			Gait		
		(mg/kg/day)	animals	-	S	T	Р	GD
		Vehicle control	10	10	0	0	0	0
	Destacing	5	5	5	0	0	0	0
	ricuosing	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	most 1	5	5	5	0	0	0	0
	WEEK I	25	5	5	0	0	0	0
		125 ·	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	weak 7	5	.5	5	0	0	0	0
	WCCK Z	25	5	5	0	0	0	0
Female		125	10	10	0)	0	0	0
remaie		Vehicle control	10	10	0	0	0	0
	wools 7	5	5	· 5	0	0	0	0
	WEEK J	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	weekA	5	5	5	0	0	0	0
	WCCAH	25	4	4	0	0	0	0
		125	10	10	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 1	125	5	5	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 2	125	5 [°]	5	0	0	0	0

Table 2-17 Twenty-eight-day repeated-dose oral toxicity study in rats

BII-0836

			_			0	bservatio	ns in arena	
Sex	Period	Exp. group	Number of	Tren	nor/twite	h/convul	sion	Defecation	Urination
		(mg/kg/day)	animals	0	+1	+2	+3	(count/min) ^{a)}	(count/min)*
		Vehicle control	10	10	0	0	0	0,2 ±0,42	1.1 ±1.45
	Bradaciac	5	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	ricoosing	25	5	5	0	0	0	0.0 ±0.00	2.8 ±3.63
		125	10	10	Ó	0	0	0.6 ±1.07	1.1 ±1.45
		Vehicle control	10	10	0	0	0	0.4 ±0.97	0.4 ±0.70
		5	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	Week i	25	5	5	0	0	0	0.6 ±0.89	1.4 ±1.67
		125	10	10	0	0	0	1.1 ±1.66	0.2 ±0.42
		Vehicle control	10	10	0	0	0	0.7 ±1.06	0.7 ±0.82
	li O	5	5	5	0	0	0	0.4 ±0.89	0.0 ±0.00
	week Z	25	5	5	0	0	Ο.	0.6 ±0.89	1.6 ±1.52
×4-1-		125	10	10	0	0	0	0.7 ±1.34	1.1 ±1.66
Male	******	Vehicle control	10	10	0	0	0	0.5 ±1.27	1.3 ±1.70
		5	5	- 5	0	0	0	0.2 ±0.45	0.0 ±0.00
	week 3	25	5	5	0	0	0	1.4 ±1.14 *	3.2 ±3.35
		125	10	10	0	· 0	0	0.0 ±0.00	0.5 ±1.08
	B	Vehicle control	10	10	0	0	0	0.3 ±0.67	0.7 ±1.34
	mands 4	5	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	week 4	25	5	5	0	0	0	1.6 ±1.14 *	1.2 ±1.30
		125	10	10	0	0	0	0.3 ±0.67	0.4 ±0.70
	Recovery	Vehicle control	5	5	0	0	0	0.2 ±0.45	0.2 ±0.45
	week I	125	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	Recovery	Vehicle control	5.	5	0	0	0	0.0 ±0.00	0.2 ±0.45
	week 2	125	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00

a) Mean ±S.D.

* Significantly different from vehicle control at P<0.05.

** Significantly different from vehicle control at P<0.01.

Table 2-18 Twenty-eight-day repeated-dose oral toxicity study in rats

						Observ	vations in	arena	
Sex	Period	Exp. group	Number of	Tren	nor/twite	:h/convu	lsion	Defecation	Urination
,	,• ·	(mg/kg/day)	anima Is	0	+1	+2	+3	(count/min) ^{a)}	(count/min) ^{a)}
		Vehicle control	10	10	0	0	0	0.0 ±0.00	0.8 ±0.92
	Duadaatua	5	5	5	0	0	0	0.0 ±0.00	1.4 ±2.61
	rredosing	25	. 5	5	0	0	0	0.0 ± 0.00	1.8 ±2.95
		125	10	10	0	0	0	0.0 ± 0.00	0.3 ±0.48
		Vehicle control	10	10	0	0	0	0.0 ±0.00	0.5 ±0.71
	annate t	5	5	5	0	0	0	0.0 ±0.00	0.6 ±0.89
	WEEK 1	25	5	5	0	0	0	0.0 ±0.00	0.4 ±0.89
		125	10	10	. 0	0	0	0.0 ±0.00	1.0 ±1.41
		Vehicle control	10	10	0	0	0	0.0 ±0.00	0.3 ±0.95
	mark 7	5	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	WCCK Z	25	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
Formala		125	10	10	0	0	0	0.0 ±0.00	0.5 ±1.08
remaie	<u>,,,,,</u>	Vehicle control	10	10	0	0	0	0.0 ±0.00	0.0 ±0.00
	weak 2	5	5	5	0	0	ວ່	0.0 ±0.00	0.4 ±0.89
	WCCK J	25	5	5	0	0	0	0.0 ± 0.00	0.2 ±0.45
		125	10	10	0	0	0	0.0 ±0.00	0.0 ±0.00
		Vehicle control	10	· 10	0	0	0	0.0 ±0.00	0.4 ±0.97
	medi A	5	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	WCCK 4	25	4	4	0	0	0	0.0 ±0.00	0.0 ±0.00
		125	10	10	0	0	0	0.0 ±0.00	0.3 ±0.48
	Recovery	Vehicle control	5	5	0	0	0	0.0 ±0.00	0.2 ±0.45
	week 1	125	5	5	0	0	0	0.0 ±0.00	1.0 ±2.24
	Recovery	Vehicle control	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00
	week 2	125	5	5	0	0	0	0.0 ±0.00	0.0 ±0.00

a) Mean ±S.D.

11.

* Significantly different from vehicle control at P<0.05.

** Significantly different from vehicle control at P<0.01.

· · · · ·			······		Observ	ations in	arena	
Sex	Period	Exp. group	Number of		Stereo	typic be	havior	
		(mg/kg/day)	animals	**	С	G	S	н
		Vehicle control	10	10	0	0	0	0
	Predocin a	5	5	5	0	0	0	0
	ricuosnig	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		0	0	0				
	meet 1	5	5	5	0	0	0	0
	WCCK I	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
Male	meak 7	5	5	5	0	0	0	0
	WOUR 2	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
MAIC		Vehicle control	10	10	0	0	0	0
	maele 3	5	5	5	0	0	0	0
	Wax J	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	week A	5	5	5	0	0	0	0
	woun 4	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 1	125	5	5	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 2	125	5	5	0	0	0	0

Table 2-19 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

....

Table 2-20 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

			_		Observ	ations in	arena	
Sex	Period	Exp. group	Number of		Stereo	typic be	havior	
		(mg/kg/day)	animals	•	С	G	S	H
		Vehicle control	10	10	0	0	0	0
	Dradani ng	5	5	5	0	0	0	0
	Predosiling	25	5	5	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	woold 1	5	5	5	0	0	0	0
	WCCR I	25	5	5.	0	0	0	0
		125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	meet ?	5	5	5	0	0	0	0
	WOOK 2	25	5	5	0	0	0	0
Female		125	10	10	0	0	0	0
Temate		Vehicle control	10	10	0	0	0	0
	week 3	5	5	.5	0	0	0	0
	WOCK J	25	5	5	0	0	0	0
		· 125	10	10	0	0	0	0
		Vehicle control	10	10	0	0	0	0
	week A	5	5	5	0	0	0	0
	HOUR 4	25	4	4	0	0	0	0
		125	10	10	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 1	125	5	5	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0
	week 2	125	5	5	0	0	0	0

.

Table 2-21 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of detailed clinical observations

Sex							Observ	vations in	arena			
Sex	Period	Exp. group	Number of				Abno	ormal bel	havior			
		(mg/kg/day)	animals	-	S	В	С	R	W	V	ST	T
		Vehi cle control	10	10	0	0	0	0	0	0	0	0
	Duodestina	5	5	5	0	0	0	0	0	0	0	0
	Predosing	25	5	5	0	0	0	0	0	0	0	0
		125	10	10	0	0	0	0	0	0	0	0
	• <u>•</u> •••••	Vehicle control	10	10	0	0	0	0	0	0	0	0
		5	5	5	0	0	0	0	0	0	0	0
	WCCK I	25	5	5	· 0	0	0	0	0	0	0	0
week 2	125	10	10	0	0	0	0	0	0	0	0	
		Vehicle control	10	10	Q	0	0	0	0	0	Q	0
	weate 9	5	5	5	0	0	0	0	0	0	0	0
	week 2	25	5	5	0	0	0	0	0	0	0	0
Mala		125	10	10	0	0	0	0	0	0	0	0
IVIAIC		Vehicle control	10	10	0	0	0	0	0	0	0	0
	wools 7	5	5	5	0	0	0	0	0	0	0	0
	Week 3	25	5	· 5	0	0	0	0	0	0	0	0
		125	10	10	0	Q	0	0	0	0	0	0
		Vehicle control	10	10	0	0	0	0	0	0	0	0
	made A	5	5	5	0	0	0	0	0	0	0	0
	WCCK 4	25 ·	5	5	0	0	0	0	0	0	0	0
		125	10	10	0	0	0	0	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0	0	0	0	0
	week 1	125	5	5	0	0	0	0	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0	0	0	0	0
	week 2	125	5	5	0	0	0	0	0	0	0	0

Table 2-22 Twenty-eight-day repeated-dose oral toxicity study in rats

	<u></u>						Observ	vations in	arena			
Sex	Period	Exp. group	Number of				Abno	ormal bel	avior			
		(mg/kg/day)	animals	-	S	B	С	R	W	v	ST	Т
		Vehicle control	· 10	10	0	0	0	0	0	0	0	0
	Duo do alma	5	5	5	0	0	0	0	0	0	0.	0
	recosing	25	5	5	0	0	0	0	0	0	0	0
		125 10 10 0 Vehicle control 10 10 0	0	0	0	0	0	0	0	0		
		Vehicle control	10	10	0	0	0	0	0	0	0	0
	week 1	5	5	5	0	0	0	0	0	0	0	0
	WEEK I	25	5	-5	0	0	0	0	0	0	0	0
	week 1	125	10	10	0	0	0	0	0	0	0	0
		Vehicle control	10	10	0	0	0	0	0	0	0	0
	mar als 3	5	5	5	0	0	0	0	0	0	0	0
	Week 2	25	5	5	0	0	0	0	0	0	0	0
Eamala		125	10	10	0	0	0	0	0	0	0	0
remaie		Vehicle control	10	10	0	0	0	0	0	0	0	0
	week?	5	5	5	0	0	0	0	0	0.	0	0
	WEEKJ	25	5	5	0	0	0	0	0	0	0	0
		125	10	10	0	0	0	0	0	0	0	0
		Vehicle control	10	10	0	0	0	0	0	0	0	0
	woole A	5	5	5	0	0	0	0	0	0	0	0
	WOOR 4	25	4	4	0	0	0	0	0	0 0 0 0 0 0	0	
		· 125	10	10	0	0	0	0	0	0	0	. 0
	Recovery	Vehicle control	5	5	0	0	0	0	0	Ō	0	0
	week 1	125	5	5	0	0	0	0	0	0	0	0
	Recovery	Vehicle control	5	5	0	0	0	0	0	0	0	0
	week 2	125	5	5	0	0	0	0	0	D	0	0

 Table 3 Twenty-eight-day repeated-dose oral toxicity study in rats

 Summary of reflex (scoring scale for reflex)

BII-0836

SENSORIMOTOR FUNCTION	
Approach contact/touch response	
-1	No reaction
0	Normal
+1	Hyper reaction
Pinna response	
~1	No reaction
0	Normal
+1	Hyper reaction
Pain response (tail pinch)	
-1	No reaction
0	Normai
+1	Hyper reaction
Pupillary reflex	
+	Normal
-	Abnormal reaction
Air righting reflex	
+	Normal
	Abnormal reaction

••••

					S	ensorimo	tor functio	n	
Sex	Period	Exp. group (mg/kg/day)	Number of animals	App: tou	roach con ich respo	itact/ nse	Pin	na respo	nse
			-	-1	Ó	+1	-1	0	+1
		Vehicle control	10	0	10	0	0	10	0
Male	weak 4	5	5	0	5	0	0	5	0
	WCCR 4	25	5	0	5	0	0	0 10 5 5 10 10 5 4	0
		125	10	0	10	0	0	10	0
		Vehicle control	10	0	10	0	0	10	0
Female	and also	5	5	0	5	0	0 5	5	0
	WCCK 4	25	4	0	4	0	0	4	0
		125	10	0	10	0	0	10	0

Table 3-1 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of reflex

						Ser	sorimotor f	unction		
Sex	Period	Exp. group	Number of	Pain res	sponse (ta	il pinch)	· Pupillar	y reflex	Air righti	ng reflex
		(mg/kg/day)	animals	-1	0	+1	+	+	+	-
		Vehicle control	10	0	10	0	· 10	0	10	0
Mala		5	.5	0	5	0	0 5 0	5	0	
IVIAIC	Week 4	25	5	0	5	0	5	0	10 0 5 0 5 0 10 0	0
		125	10	0	10	0	10	0	10	0
		Vehicle control	10	0	10	0	· 10	0	10	0
Female	week 4	5	5	0	5	0	5	0	5	0
		25	4	0	4	0	4	0	4	0
		125	10	0	10	0	10	0	10	0

Table 3-2 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of reflex

Table4	Twenty-eigh	t-day repeated-dose	dy in rats	B11-0836	
	Summary of	grip strength			
Sex	Period	Ехр. дтоир	Number of Forelimb		Hindlimb
		(mg/kg/day)	animals	(g)	(g)
		Vehicle control	10	834 ±153	509 ±103
Mala	wing in A	5	5	821 ±62	499 ±113
Mae	WCC K 4	25	5	987 ±123	474 ±119
		125	10	914 ±90	450 ±144
		Vehicle control	10	689 ±218	478 ±122
D	woole A	5	5	810 ±136	400 ±112
r chiaic	WCCK 4	25	4	717 ±125	408 ±153
		125	10	735 ±156	430 ±100

Table4 Twenty-eight-day repeated-dose oral toxicity study in rats

Mean ±S.D.

~

* Significantly different from vehicle control at P<0.05.

** Significantly different from vehicle control at P<0.01.

	Summary of	motor activity								
Sex	Period	Exp. group	Number of			Mot	or activity (count)		
		(mg/kg/day)	animals	0-10	10-20	20-30	30-40	40-50	50-60	0-60 (min)
		Vehicle control	10	2688	2983	2295	2110	1411	1245	12731
			·	±1519	±1313	±1341	±1162	±1185	±1471	±6139
		5 .	5	2609	4079	2130	1746	967	838	12370
Male	week 4	· · · · · · · · · · · · · · · · · · ·		±1837	±1320	±963	±1097	±787	±846	±4524
		25	5	4003	2640	1629	916	979	623	10791
				±638	±978	±719	±872	±1018	±764	±3870
		125	10	3517	3276	2505	1865	1321	1050	13534
		·		±1693	±760	±862	±1216	±1199	±818	±4877
		Vehicle control	10	4536	3766	3313	2161	2290	794	16860
				±886	±1162	±1456	±1422	±1701	±1019	±6470
		5	5	6179	4556	4115	2803	1750	1613	21014
Female	weekA			±1589	±1157	±1550	±1411	±680	±1720	±5331
I Cilluic	WOORT	25	Å	5759	4899	3912	2266	2957	1419	21211
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**	±1663	±1783	±2046	±1700	±1564	±1643	±7891
		105	10	1971	A114	3834	2804	10.4.2	1260	18042
		142	IV	±1101	±1180	±1375	±1908	±1721	±1670	±7426

# Table 5 Twenty-eight-day repeated-dose oral toxicity study in rats

Mean ±S.D.

* Significantly different from vehicle control at P<0.05.

** Significantly different from vehicle control at P<0.01.

B11-0836

.

**B11-0836** 

able 6-1	Twenty-eight-day	repeated-dose	oral	toxicity	study	in 1	rats
	Summary of body w	reights(g)					

Sex	Exp. group	Number of					Administrati	on period			
	(ng/kg/day)	animals	-2	<b>F</b> -1	8	8	12	17	21	26	28 (days)
	Vehicle control	10	125.3 124.1	$\begin{array}{c}141.2\\1&5.1\end{array}$	155.9 ± 7.0	196.5 ± 13.9	228.6 ± 18.0	262.5 ± 22.9	287.0 ±25.4	318.0 ± 31.1	326.6 ± 31.8
Male	Ω	ß	125.9 ± 4.3	$\begin{array}{c}142.5\\\pm 6.0\end{array}$	$\begin{smallmatrix}156.1\\1&7.0\end{smallmatrix}$	196.4 $\pm 10.4$	$^{228.3}_{\pm 10.7}$	$265.3 \pm 12.1$	290.7 ± 14.2	$321.9 \pm 18.7$	330.1 ± 20.8
	25	ß	125.5 ± 4.5	142.0 142.0	155.9 $\pm$ 7.1	197.6 $\pm 11.2$	226.7 ± 15.8	255.6 ± 20.2	278.3 ± 24.9	308.4 ± 28.3	315.2 ± 31.2
	125	10	125.2 ± 3.2	142.3 142.3	155.5 ± 4.5	$\begin{array}{c}193.4\\\pm 10.8\end{array}$	$\begin{smallmatrix}223.8\\\pm14.6\end{smallmatrix}$	256.1 ± 17.5	279.7 1.8.1	307.0 ± 20.5	314.1 ± 20.1
	Vehicle control	10	112.7 ± 3.6	125.9 122.4	136.7 ± 3.5	160.7 ± 5.5	173.2 ± 6.4	186.1 ± 8,1	198.6 ± 11.0	213.6 ± 12.1	217.1 $\pm 13.2$
Fenale	Ъ	a	113.2 ± 3.0	127.5 $\pm 3.9$	137.6 ± 6.8	$\begin{array}{c} 158.2\\ 114.7\end{array}$	175.3 ± 19.6	$\begin{array}{c} 192.7\\ \pm 21.2 \end{array}$	$\begin{array}{c} 205.1 \\ \pm & 23.5 \end{array}$	219.7 ± 21.8	220.0 ± 25.3
	25	ŝ	113.2 13.6	$127.9 \\ \pm 3.6$	137.2 ± 4.4	163.4 + 9.5	178.0 110.5	195.1 110.8	209.1 1 9,3	221.2 ± 12.8(4)	226.4 ± 13.8(4)
	125	10	$\begin{array}{c} 113.3\\ \pm 3.8\end{array}$	126.4 1 5.0	136.3 1 8.5	160.2 ± 14.1	176.7 ± 18.9	$\begin{array}{c} 190.7\\ \pm 20.7\end{array}$	201.8 ± 21.6	$\begin{smallmatrix}215.1\\t&22.5\\t&22.5\end{smallmatrix}$	220.9 ± 23.6
Mean + S.	D.										

neau I.a... Figure(s) in parentheses indicate number of animals used for mean calculation. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

raís	
In	
study	
toxicity	
oral	
repeated-dose	
Twenty-eight-day	Currence of the day
able 6r2	

B11-0836

		MANSTON PAOL	/6/			
Sex	Exp. group	Number of		Recov	ery period	
	(mg/kg/day)	animals	.1	5	10	14 (days)
Male	Vehicle control	20	314.7 ± 28.3	332.0 ± 28.0	355.9 1 31.6	371.7 ± 33.0
	125	2	303.4 ± 12.0	315.7 ± 10.9	337.6 ± 10.4	355.1 ± 10.0
Female	Vehicle control	£	$224.2 \\ 13.8 $	233.4 ± 13.2	238.0 116.4	244.4 ± 18.4
	125	5	220.8 1 27.2	224.1 ± 27.2	228.1 ± 27.6	233.6 ± 31.3
	-					

Mean ±S.D. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.</pre>

Twenty-eight-day repeated-dose oral toxicity study in rats Summary of food intakes(g/rat/day) Table 7-1

Sex	group.	Number of			Admi	nistration peri-	ođ		
-	(mg/kg/day)	animals	1	3	80	15	22	28 (days)	
	Vehicle	10	17.0	17.4	- 19.4 + 2.2	18.8 + 2.4	18.4 +	18.0 + 2.6	
	1011100	ъ	17.0		3	19.0	, 0 , 10 ,	- 5.5 18,1	
Male			± 0.9	± 1,2	1 I.4	± 0.7	± 18.8	1.7	
	25	ŝ	16.3	17.0	19.2	17.6	0.1	16.8	
			t 0.9	÷ 6 ° 0 · ∓	t 1.3	± 1.2	± 17.3	± 1,3	
	125	10	17.1	17.6	19.5	19.1	1.7	18.1	
			± 0.8	± 1.2	± 1.9	± 2.0	± 18.7	1.2	
	Vehicle	10	14.3	14.2	15.2	12.9	11.9	12.4	
	control		± 0.5	+ T.0	± 1.0	± 1.4	± 1.1.	± 1.3	
	S	ß	15.0	14.7	14.9	13.4	,	12.4	
Fenale			t 1.5	4 2.5	± 2.9	± 2.3	± 2.3	± 2.3	
	25	сı	15.0 + 0.6	14.1	+ 15.9 4	+ 13.4	12.7	13.2 + 1 5(4)	
				} • •	) -	4			
	125	10	14.3	14.2	15.4 20.4	13.4	12.6	13.1	
			2 · · 2	0.1 I	7-9 7	F . 4	0.1 2	E - T - J	

. .

Mean ±S.D. Figure(s) in parentheses indicate number of animals used for mean calculation. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.</p>

rats	
ln	
study	
toxicity	
Twenty-eight-day repeated-dose oral	Summory of food intakee(s/ret/day)
Table 7-2	

....

.

**B11-0836** 

	T TO ATRAMINO	CAUPTER DAA	19/10/	uay )		
Sex	Exp. group	Number of			Recovery period	•
	(mg/kg/day)	animals	4		8	14 (days)
Male	Vehicle control	ъ	t 19.	02	22.2 ± 2.0	23.2 ± 2.2
•	125	ŝ	+ 19. + 11.	20	$\begin{array}{c} 21.0\\ \pm & 0.1 \end{array}$	1 22.6 1 0.4
Female	Vehicle control	5	± 14.	56	± 16.8 ± 2.1	17.3 ± 1.8
	125	5	14. † 11.	5 8	15.6 ± 1.5	15.5 ± 1.9

•

.

.

Mean ±S.D. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

·

•

٠

.

.
in rats	
study	
toxicity	
oral	nation
repeated-dose	Indinal evamin
Twenty-eight-day	Summary of homato
Table 8-1	

	Summary of	dema to log 1 ca	II EXAMINATI	ons										
	Exp. group	Number of	RBC	WBC	Eb All	łt	MCV	NCH	MCHC	Platelet	Reticulo	ΡŢ	APTT	
Sex	(ng/kg/day)	animals	(x10 ⁴ /µl)	$(x10^{2}/\mu L)$	(f)(g)	(%)	(II)	(bg)	(g/dL)	(x104/µL)	(%)	(sec)	(sec)	
	Vehicle control	ß	782 ± 20	122 ± 15	15.4 ± 0.3	45.9 ± 0.8	58.7 ± 1.6	19.8 ± 0.6	33.7 ± 0.3	99.3 ± 8.5	2.4 ±0.5	14.3 ± 1.1	25.2 + 2.2	1
	ъ	S	782 ± 23	$\begin{array}{c}119\\ \pm 23\end{array}$	15.5 ± 0.5	45.8 1.6	58.7 ± 1.2	$\frac{19.9}{10.5}$	33.9 ± 0.4	99.7 ± 7.8	2.4 10.4	14.7 ± 1.5	-26.5 -3.7	
Male	25	ນ	756 ± 53	115 ± 18	15.1 ± 0.9	44.7 ± 3.0	59.2 ± 1.2	$20.0 \pm 0.4$	$33.8 \pm 0.2$	94.8 1 5.4	2.8 ±0.5	+15.5	26.8 + 0.8	
	125	S	784 ± 43	108 ± 27	15.4 ± 0.6	45.8 + 2.4	58.4 + 1.2	19.7 + 0.5	33.7 † 0.5	97.5 + 10.9	2.2 +0.3	15.1 + 0.7	-26.2 + 1.3	
	Recovery Vehicle control	5	847 ± 17	108 119	16.1 ± 0.4	47.7 ± 1.0	56.3 ± 0.2	19.0 ± 0.3	33.7 ± 0.3	103.7 ± 8.5	1.7 ±0.3	18.6 ± 4.2	31.4 ± 1.0	1
	125	ഹ	198 ± 55	111 + 9	15.0** ± 0.5	43.8** ± 1.2	55.0 ± 2.6	18.8 ± 0.9	34.2 ±0.4	103.4 ± 14.0	2.2 ±0.6	18.0 15.3	28-2 ± 3.1	
	Vehicle control	5	777 ± 32	+ 80	15.4 ± 0.4	44.7	57.8 ± 1.7	19.8 ± 0.5	34.3 10.4	109.2 + 14.3	1.8 ±0.5	13.3 ± 0.5	22.4	1
	ŝ	Ŋ	760 ± 27	88 16	15.2 ± 0.4	44.9 † 1.4	59.1 ± 0.5	$^{20.0}_{\pm 0.3}$	33.8 10.3	$^{-102.9}_{\pm 8.2}$	1.8 10.2	13.0 10.8	23.4 ± 2.0	
fenale	25	4	778 ± 26	109 ± 37	15.2 ± 0.4	45.0 ± 1.6	57.8 ± 1.4	19.5 ± 0.4	33.8 $\frac{1}{2}$ 0.3	106.1 ± 6.4	1.9 10.5	$13.4 \\ 10.7$	24.0 ± 1.1	
	125	ິດເ	763 ± 21	± 21	15.3 ± 0.5	45.1 † 1.8	59.1 + 2.1	+ 0.7	34.0 10.2	105.3 † 7.3	1.7 ±0.3	12.8 $\pm 0.5$	23.3 ± 2.5	
	Recovery Vehicle control	വ	777 ± 47	67 ± .17	15.0 ± 0.7	42.8 ± 1.9	55.1 ± 1.8	19.4 ± 0.7	35.2 ± 0.3	123.8 ± 10.7	1.5 ±0.3	13.6 ± 0.8	21.1 ±1.5	ł
	125	G	798 ± 26	± 12	14.7 ± 0.5	42.3 ± 1.3	53.0 ± 1.5	18.5 ± 0.6	34.9 ± 0.2	127.2 ± 5.4	1.3 10.2	13.7 ± 0.4	21.9 ± 2.7	
1 3 T uby	-													I

Mean ±S.D. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

...

Table 8-2	Twenty-eight Summary of k	t-day repeatu hematologica	ed-dose ora 1 examinati	ul toxicity s ons	tudy in rats			B11-0836
	Exp.group	Number of		Differenti	lation of let	ukocyte (%)	1	
Sex	(mg/kg/day)	animals	Neutro	Eosino	Baso	Lynph	Mono	PAC -
	Vehicle control	£	18.0 + 6.3	0.6 ±0.2	0.1 ±0.0	78.1 ± 6.6	2.5 ±0.6	0.7 ±0.2
	ប	ຎ	715.9 + 4.6	0.8 ±0.3	0.0 ±0.0	80.5 ± 4.8	2.1 ±0.2	0.6 10.1
Male	25	5	-19.5 14.5	0.8 ±0.3	0.1 10.1	76.5 ± 4.9	2.6 ±1.0	0.6 ±0.3
	125	5	$\frac{21.2}{15.0}$	0.6 ±0.4	0.1 ±0.0	75.0 + 5.1	2.5 +0.5	0.6 ±0.1
	Recovery Vehicle control	си	14.6 ±5.4	0.9 +0.4	1.6 ±0.7	80.4 ± 5.0	1.9 ±0.4	0.7 ±0.2
	125	ß	20.1 ± 5.9	0.8 ±0.4	0.8 10.5	75.8 ± 6.3	2.0 ±0.8	0.6 ±0.2
	Yehicle control	5	16.5 ± 9.3	0.7 ±0.3	0.1 ±0.0	79.8 ±11.4	2.4 ±2.1	0.6 ±0.1
	ນ	ũ	$\begin{smallmatrix}13.8\\\pm&6.2\end{smallmatrix}$	0.8 ±0.2	0.1 ±0.1	82.7 ±6.8	1.7	0.9 ±0.2
Fenale	25	4	15.7 ±4.9	1.0 ±0.5	0.1 ±0.0	80.7 ± 4.3	1.9 ±0.7	0.8 ±0.2
	125	ъ	$15.7 \pm 4.7$	0.7 ±0.3	0.1 40.0	81.5 ± 4.8	1.4 ±0.4	0.7 ±0.1
	Recovery Vehicle control	വ	16.3 ± 6.7	1.3 ±0.4	0.3 ±0.1	79.4 ± 6.6	2.1 ±0.7	0.7 ±0.3
	125	5	16.8 14.9	1.5 ±0.6	0.4 ±0.2	78.4 <u>1</u> 4.8	2.1 ±0.5	0.8 ±0.4
4 0 T								

Mean 土S.D. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

.

.

.

.

ģ

•

•

,

.

.- 68 -

.

811-0836

.

.

	Summary of	blood cnemic	al examina	tions									
	Exp. group	Number of	AST	ALT	ALP	ChE	7 -GIP	T-Cho	TG	Glucose	T-Protein	Albumin	A/G ratio
Sex	(mg/kg/day)	animals	(1/0I)	(T/AI)	(1/n)	(1/hI)	(1/11)	(ng/dL)	(TP/Su)	(Tp/Sm)	(Tp/S)	(TP/S)	
	Vehicle control	ີດ	61 ± 4	20 1 3	463 ± 96	± 16	0.5 ±0.3	70 ±18	86 ±26	154 <u>†</u> 15	5.6 ±0.3	2.9 ±0.0	1,08 ±0,10
	വ	ນ	± 63	$\begin{smallmatrix}21\\\pm&2\end{smallmatrix}$	505 1 92	43 12	0.5 ±0.1	60 113	79 <u>+</u> 21	157 <u>†</u> 9	5.5 ±0.2	2.9 ±0.1	1.09 ±0.06
Male	25	Ω,	70 ±11	$\frac{1}{1}$	559 ± 90	42 1	±0.6	9 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 ±21	164 ± 18	5.5 ±0.3	2.9 ±0.3	1.07 ±0.14
	125	ວ	79* ±15	33** ± 7	727** ± 99	+ 44 5	0.6 10.2	44* † 4	87 129	176 † 15	5.7 ±0.4	2.9 10.2	1.07 ±0.08
	Recovery Vehicle control	ជ	67 ± 3	± 23	321 ± 43	45 ± 55	0.6 10.3	62 ±11	76 ±34	$\frac{143}{\pm 25}$	5.8 ±0.1	2.8 ±0.0	0.95 ±0.04
	125	ស	67 ± 7	+ ²³	357 145	+ 125 12	0.6 ±0.3	54 ±12	74 ±25	129 ± 6	5.7 ±0.2	2.7 ±0.1	0.94 ±0.09
	Vehicle control	ນ	71 ±12	18 ± 4	313 176	184 ± 53	0.7 ±0.3	62 ±12	81 11	135 ± 15	5.7 ±0.1	3.1 ±0.1	1.15 ±0.04
	ນ	Ŋ	+ 64 56	± 16 ± 3	260 ± 53	199 135	$\frac{0.7}{10.3}$	67 ±10	26 1 7	$\frac{131}{124}$	5.7 ±0.2	3.0 ±0.1	1.14 ±0.02
Fenale	25	4	165 18	17 ± 2	246 ± 86	194 ± 49	0.7 ±0.3	69 ±11	38 ±15	156 ± 25	5.8 ±0.2	3.1 ±0.1	1.18 ±0.04
	125	ດ	4 62 4	$\frac{21}{12}$	317 ±114	100* ± 19	1.4* +0.5	79 ±15	40* +12	$\frac{129}{17}$	6.0 10.3	3.3** ±0.2	$1.25 \\ \pm 0.09$
	Recovery Vehicle control	ß	69 ± 7	20 ± 5	169 144	333 1132	0.9 ±0.1	66 <u>+</u> 11	- 50 1+ 20	130 ± 17	6.2 10.3	3.1 ±0.2	1.04 ±0.08
	125	ល	71 ± 7	19 ± 1	172 ± 26	230 ± 55	1.0 ±0.2	$\frac{70}{13}$	32 ±15	137 1 26	6.4 ±0.2	3.3 ±0.1	1.07 ±0.07
Mean + S.	č												

•

Mean エン・・・ * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

Table 9-2 Twenty-eight-day repeated-dose oral toxicity study in rats

-	Summary of	blood chemic	al examinat	ions						
	Exp.group	Number of	BUN	Creatinine	T-B11	Ca	IP	Na	K	CI
Sex	(mg/kg/day)	animals	(mg/dL)	(TP/BE)	(mg/dL)	(ng/dL)	(Tp/gu)	(ngq/L)	(mEq/L)	(mgq/L)
	Vehicle control	5	9.0 ± 2.7	0.25 ±0.02	0.06 ±0.01	9.8 ±0.4	7.6 ±0.6	143 ± 1	4.5 ±0.4	105.4 ± 1.1
	Ω	ъ	9.0 ± 1.1	0.22 ±0.02	0.07 ±0.01	9.7 ±0.1	7.8 ±0.1	142 ± 1	4.3 ±0.2	103.6 ± 1.5
Male	25	ŝ	9.8 1.6	0.22 ±0.03	0.07 ±0.02	9.5 ±0.4	8.4 ±1.2	142 ± 1	4.4 10.1	$105.0$ $\pm$ 1.2
	125	ъ	9.6 † 0.9	0.24 ±0.03	+0.09 -0.03	9.6 ±0.6	8.2 +1.0	142 ± 1	4.5 ±0.4	$\begin{array}{c} 104.5 \\ 1.7 \end{array}$
	Recovery Vehicle control	ũ	14.1 ± 1,9	0.26 +0.03	0.07 ±0.01	9.7 ±0.4	7.1 ±0.6	144 ± 1	4.2 ±0.3	106.7 ± 1.1
	125	ά	15.1 $\pm 1.3$	-0.25 ±0.02	0:06 ±0.01	9.2 ±0.3	7.1 ±0.4	144 ± 0	4.4 ±0.3	$\begin{array}{c}107.4\\ \pm 1.2\end{array}$
	Vehicle control	ດ	10.1 ± 1.9	0.25 ±0.01	0.05 ±0.01	9.6 10.2	7.8 ±0.8	142 ± 1	4.4 ±0.2	105.5 ± 0.7
	5	ល	9.4 ± 1.0	0.24 ±0.04	0.05 ±0.01	9.9 ±0.1	8.0 10.4	143 ± 1	4.3 +0.1	105.9 ± 1.1
Female	25	4	9.3 ± 0.8	0.24 ±0.01	0.05 10.01	9.8 ±0.2	7.9 ±0.6	142 ± 1	⁻4.3 ±0.2	106.2 ± 0.7
	125	ŝ	9.1 ± 1.5	0.23 10.04	0.07* ±0.02	9.9 10.4	7.9 ±0.4	142 1 1	4.4 ±0.2	106.5 ± 0.9
	Recovery Vehicle control	ъ	15.8 ± 1.3	0.29 ±0.04	0.06 10.01	9.3 10.2	5.8 ±0.3	143 ± 1	4.0 ±0.2	109.2 ± 0.8
	125	ເນ	17.8 ± 2.8	0.29 ±0.05	0.07 ±0.02	9.7 ±0.3	6.8** ±0.6	143 ± 1	4.3 ±0.5	108.9 ± 1.7
Naon Lo D										

Nean ±S.D. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

- 70 -

•

							•							
tudy in rats								•						
toxicity s	Sp.Gr.	1.042 ±0.026	1.057 ±0.024	1.041 ±0.023	1.027 ±0.013	1.027 ±0.013	1.030 10.012	1.026 ±0.023	1.025 ±0.009	1.040 10.010	1.024 $\pm 0.012$	1.029 ±0,014	1.027 ±0.008	
ed-dose oral	Urine volume (mL)	± 3	± 14	1+ 30	1 1 5	14 ± 6	+15	± 8 6	96 4 . l	4 4 1	იი დ. ო	1+ 1+	∞ က ≁- 1	
t-day repeat urinalyses	Number of animals	ۍ ۲	Q	ъ	ນ	£	ŝ	Q	Ω	4	ณ	5	Q	
Twenty-eigh Summary of	Exp.group (mg/kg/day)	Vehicle control	ດ	25	125	Recovery Vehicle control	125	Vehicle control	ល	25	125	Recovery Vehicle control	125	
able 10-1	Sex			Male						ienale				

1

Mean 土S.D. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

**B11-0836** 

..

~

-----

ll toxicity study in rats	
Ę	
repeated-dose o	
ay	
Ĩ	i
Twenty-eight	
ŝ	
10	
ble	

ģ

Table 10~2	Twenty-eight-d Summary of urit	lay repeated-do: 1alyses	se on	al toxicity	study in rats									BI 1-0836
	Exp.group	Number of	ರ	olor	Turbidity		Hď			rote	.9	Glucose	Occult	blood
Sex	(mg/kg/day)	animals	۶۲	۲	NT	6.0	6.5	7.0	H	1	2+	1	. 1	+1
	Vehicle control	5	0	Q	2	1	4	0	0	ę	7	ດມ	Ω	0
	0	S	0	Q	Q	C3	ŝ	٥	0	7	e	Ð	Q	0
Male	25	ល	0	വ	5	****	4	0	0	3	63	ഹ	4	-
	125	QJ	~	ন্দ	ß	Ţ	ቅ	0		ব	0	cی ریا	ຊ	0
	Recovery						· ·							
	Vehicle control	с,	e S	07	с С	0	2	ę	67	ო	0	Q	ŝ	0
	125	ß	0	ę	s.	0	22		3	3	0	មា	S	0
	Vehicle	9	5	3	5	-	3	1	~	2		2	4	I
	control 5	ъ	<b>*1</b>	4	ŋ	-	ŝ	1	1	ŝ	-	ŝ	ς	0
clamo	25	4	0	4	4	63	2	0	0	73	5	4	4	0
amma. I	125	5	8	e	ល	1	3	1	~	0	1	£	ά	0
	Recovery Vehicle	ß	r,	5	ß	-	ۍ ۲		ۍ ۳	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	5	ഹ	0
	control 125	ຎ	~		сı	1	ŝ	r-4	e	63	0	ى ئ	ល	0
SY, Slightly ) Y, Yellow. NT, Not turb	yellow. vid.													

**.** . .

Table 10-3 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of urinalyses (Urinary sediment)

	oummary or un	nauyses (umnar)	y sequently							
	Exp.group	Number of	Red blood cells ^{a)}	White blood ceils ^a	Epithelial cells ^{a)}	Casts ^{b)}		Cryst	als ^{c)}	
Sex	(mg/kg/day)	animals	0	0 1-5	0 1-5	0	1	Ŧ	+	‡
	Vehicle	ŝ	5	4 1	0 5	5	4		1	8
	control 5	Q		r 9	•	1	٠	•	٠	
1 f _ 1	25	0	1	e 1	۲ ۱	ı		ı	,	3
Male	125	cu	с,	5 0	0	5	8	8	1	0
	Recovery Vehicle	0		2 2	E	. в	5	1		8
	125	0	·	8	•	ł	1	•	, •	
	Vehicle	Ð	5	3 2 '	1 4	5	~	~	0	0
	control	0	•	•	r J	٠	•	•		ł
-	25	0		2 X	1 1	ł		•	٠	ł
remaie	125	5	ß	4 1	2 3	ស	4	1	0	0
	Recovery Vehicle	o	1	P	÷	3	1	Ŧ	٩	 1
	control 125	0	<b>e</b>		•	F	•	۱	,	٠

۰.

a) Number of cells/10 views (×400).
 b) Number of casts/18×18 mm².
 c) Incidence of crystals/18×18 mm².

- 73 -

6
. en
00
0
- 1
-
-
ρÂ

.

.

Twenty-eight-day repeated-dose oral toxicity study in rats Summary of absolute organ weights Table 11

Sex	Exp. group	Number of	Liver	Heart	Kidney	Testis	Epididynis	Ovary ()	Brain	Spleen	Thymus ()	pa	renal	Body weight a
	Vehicle Control	2	10.80 ± 2.27	1.03 1.03 1.08	2.17 + 0.17	(8) 2.77 + 0.24	(6) + 0.08 + 0.08	199111	1.88 1.88 1.06	15 15 15	485.9 ± 99.2	+	52.3	19.3 19.3 133.4
	л.	ŝ	10.36 ± 1.00	1.05 ± 0.07	2.31 ± 0.21	± 0.10	- 0.66 + 0.04	11	2.00 ± 0.13	0.52 ± 0.07	493.1 1 47.2	ব +1	48.9 5.3	314.2 ± 20.3
Male	25	CI	10.37 ± 1.57	1.06 ± 0.10	2.35 ± 0.38	± 0.82	0.66 ± 0.11	11	1.92 ± 0.06	0.58 ± 0.06	454.0 1 97.9	4	43.4 6.1	297.3 ± 30.6
	125	£	12.22 ± 0.91	1.03 1.03	2,44 16	2.85 + 0.27	0.85 10.03	1 1	$1.94 \\ 1 0.03$	0.49 + 0.13	464.4 128.1	+	45.6 10.5	$\begin{array}{c} 301.1 \\ 1 & 20.8 \end{array}$
	Recovery Vehicle control	s	9.66 ± 2.19	1.06 ± 0.06	2.39 ± 0.19	2.89 ± 0.21	0.98 10.03	t i	2.02 ± 0.05	0.57 £ 0.08	405.4 ± 75.8		45.6 3.8	₹ 348.5 ± 30.3
	125	ŝ	8.76 ± 0.22	1.07 1.03	2.45 ± 0.20	3.20* ± 0.15	0.99 ± 0.03	11	1.97 1.05	0.58 ± 0.07	451.8 ± 99.4	ц. Ч	46.9 8.5	334.6 ± 8.5
	Vehicle control	ß	6.27 ± 0.65	0.76 ± 0.03	1.44 ± 0.10	11	1	± 73.9	1.83 ± 0.02	0.37 ± 0.05	396-6 ± 78.5		53.8 4.8	202.8 ± 10.5
	ъ З	Ş	6.48 ± 1.04	0.83 ± 0.09	1.59	, ,	11	70.8 ± 20.5	$1.81 \\ 1 0.03$	0.38 ± 0.04	434.8 ± 80.4	-H	56.8 7.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fenale	25	4	7.31 ± 0.73	0.76 ± 0.02	1.56 ± 0.07	1.1	11	72.2 ± 1.4	1.88 1.07	0.44 ± 0.07	435-5 ± 25.3	4) -	57.0 5.4	$\begin{array}{cccc} 214.0 \\ 11.4 \end{array}$
	125	з	8.35** ± 0.94	0.78 ± 0.06	$\frac{1.72*}{10.17}$	11	11	+ 7.7	1.85 + 0.05	0.38 † 0.04	464.4 † 74.7	њ т	56.1 9.8	$\begin{array}{c} 209.3 \\ \pm & 21.0 \end{array}$
	Recovery Vehicle control	5	6.11 ± 0.73	0.82 + 0.09	1.60 ± 0.13		* 1	74.6 ± 16.4	1.85 ± 0.04	0.45 ± 0.03	364.6 ± 59.3	+ +	56.8 10.5	229.5 ± 16.8
	125	5	6.59 ± 0.66	- 0.82 ± 0.07	1.58 ± 0.11	11	11	t 71.5	1.92* ± 0.04	0.43 ± 0.02	401.6 ± 82.1	9 +1	62.9 8.8	221.9 ± 30.7
1 04 noon	Ē													

Mean ±S.D. a) Statistical analysis was not applied. * Significantly different from vehicle control at P<0.05. ** Significantly different from vehicle control at P<0.01.

CO
ň
- uu
0
_
<b>CO</b>

Twenty-eight-day rep^eated-dose o^rāl toxicity study in rats Summary of relati^{ve} organ weights Table 12

Body weight a) (g)  $314.2\\20.3$ 297.3 30.6 348.5 30.3 229.5 16.8 319.3 33.4 301.1 20,8 334.6 8.5 202.8 10.5 211.8 22.0 214.011.4 209.3 21.0 221.9 30.7 Adrenal (mg/100g) 16.5 2.3 15.81.3 14.6 1.6 15.3 4.4 1.2 14.02.4 26.6 2.9 26.8 2.6 26.7 3.0 24.7 3.3 28.7 5.4 ∞ 30. Thymus (mg/100g) 134.8 28.7 158.4 ± 17.8 152.8 29.4 157.3 15.4 151.4 ± 21.5 153.534.9115.8 ± 14.9  $194.9 \\ 32.1$ 205.3 34.5 204.5 23.1 181.7 29.8 222.1 Spleen (g/100g) 0.18 ±0.01 10.03 0.17 ±0.02 0.20 10.04 0.16 ±0.04  $\begin{array}{c} 0.16 \\ \pm 0.02 \end{array}$ 0.18 ±0.03 0.18 40.01  $\begin{array}{c}
 0.21 \\
 10.03
 \end{array}$ 0.18 ±0.00 0.20 10.02 203 ဝင်္ခ Brain (g/100g)  $0.80 \\ \pm 0.06$ 0.64 10.05 0.85 ±0.05 0.65 10.04  $\begin{array}{c} 0.58 \\ \pm 0.04 \\ 0.59 \\ \pm 0.01 \end{array}$ 0.90 ±0.04  $\frac{0.86}{10.08}$  $\begin{array}{c}
 0.88 \\
 40.02
 \end{array}$ 0.89 0.81 ±0.05 0.88 ±0.13 0vary (mg/100g) 33.0 6.2 33.8 32-8 6.1 36.8 5.2 1.6 35.4 32.3 1 1 1 1 1 4 11 1.1 4.6 T Epididymis (g/100g) 0.30 ±0.01 0.21 ±0.03  $10.22 \\ 10.03$ 0.28 40.02 0.21 ±0.02 0.22 1.1 1 Testis (g/100g) 0.96** ±0.05 0.85 ±0.05 0.88 10.12 0-83 ±0-25 0.95 0.83 1 J 1 4 1.1 1 1 Kidney (g/100g) 0.81** 0.82 * * 10.040.79* 0.68 t0.05 0.74 ±0.05 0.69 ±0.07 0.73 ±0.07 0.75 ±0.05  $\begin{array}{c}
 0.72 \\
 \pm 0.09
 \end{array}$ 0.71 ±0.04  $\begin{array}{c} 0.73 \\ 10.03 \end{array}$ 0-70 ±0.06 Heart (g/100g) 0.32* ±0.01 0.36 10.02 0.30 0.32 0.34 10.03 0.34 40.01 0.38 ±0.03 0-39 ±0-02 0.35 0.38 0.36 ±0.03 0.38 ±0.04 Liver (g/100g) 4 · 06** 3-98**  $2.99 \pm 10.26$ 3.29 ±0.20  $3.47 \\ \pm 0.20$ 3-09 ±0-25 3.05 ±0.18  $3.42 \\ \pm 0.29$ 2.66 $\pm 0.13$ 3.36 ±0.34 2.75  $\frac{2.62}{10.08}$ Number of animals ŝ Reco^ver^y Vehícle control Beco^very Vehicle control Vehicle control Exp.group (mg/kg/day) Vehicle control 125 125 125 125 ŝ ວ 25 25 Mean ±S•D. Fenale Sex Male

a) Statistical analysis Was not applied. * Significantly different from vehicle control at P<0.05. ** Significantly different from Vehicle control at P<0.01.

ч.

Table 13 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of macroscopic examinations

			Ma	le					Ч	smale			
Findings	Vehicle control	Vehicle control (Recovery)	5	25	125	125 (Recovery)	Vehicle control	Vehicle control (Recovery)	S	5	5	125	125 (Recovery) (mg/kg/day)
	ta	ta	ផ	ta	ta	ta	ta	ta	ta	ta	fd	ta	ta
	5 ^{a)}	5	5	5	5	S	5	ъ	S	4	1	ŝ	5
No abnormalities detected	5	5	s	4	0	0	5	5	5	4	0	0	0
Lung Dark reddish change	0	0	0	0	•	0	0	0	0	0	-	0	0
Oral cavity Mottled teeth	0	0	0	0	5	5	0	0	0	0	0	5	s.
Rough surface of incisor	0	0	0	0	0	0	0	0	0	0	0	0	6 # C # ¥ 7 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Liver Bnlarrement	0	0	0	0	4	0	0	0	0	•	0	5	0
Testis Small	c		0	-	c	c							
Softening	0	0 -	0		0	0	8 9 4 1 8 8 1 1	1 2 1 5 5 5 1 1 4 6 7 7					
Thyroid Aplasia of left lobe	0	0	0	0	0	0	0	0	0	0	0	0	-
ta, terminal autopsy; fd, found dead	I.												
a) Number of animals examined.													

- 76 -

tudy in rats	
de 14-1 Twenty-eight-day repeated-dose oral toxicity stu	Summary of histopathological examinations
Ta	

ndmerry vo famminno	19111111	ITYTTOUS IN	2110 m	a constant of the second se										
				Ma	9					ц <u>я</u>	smale			
Findings	Grade	Vehicle control	Vehicle control (Recovery)	s	25	125	125 (Recovery)	Vehicle control	Vehicle control (Recovery)	ŝ	6	5	125	125 (Recovery) (mg/kg/day)
		ta	ta	ta	ta	ta	ta	ta	ħ	ta	ta	Ę	ţ	ta
		5 ^{a)}	5	5	5	s	S	ŝ	ŝ	5	4		5	5
Trachea		4												
No abnormalines detected		5/5"	1	1	1	5/5	1	5/5		1	1	1	ŝ	
Lung														
No abnormalities detected		5/5	ł	I	1	5/5	1	5/5	ł	I	1	1/0	5/5	-
Congestion	‡	0/5	1	1	1	570		0/5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	И	0/5	
Edema	+	0/5	-	1	1	0/5		0/5	****	1	1	М	0/5	
Incisor														
No abnormalitics detected		5/5	5/5	5/5	5/5	2/5	3/5	5/5	5/5	5/5	4/4	1/1	3/5	2/5
Cyst formation in papillary layer	+	0/5	0/5	0/5	0/5	1/5	0/5	0/5	0/5	0/5	0/4	1/0	1/5	0/5
Decreased iron pigments of ameloblasts at maturation stage	+	0/5	0/5	0/5	0/5	3/5	0/5	0/5	0/5	0/5	0/4	1/0	2/5	1/5
Irregular alignment of amelobiasts at maturation stage	+	0/5	0/5	0/5	0/5	1/5	2/5	0/5	0/5	0/5	0/4	1/0	1/5	3/5
Irregular alignment of papillary layer	+	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/4	0/1	0/5	1/5
Forestomach														
No abnormalities detected		5/5	ł	1	1	5/5	١	4/5	ł	1	1	1	4/5	
Necrosis of squamous	ના	<u>5/0</u>	1	1	ſ	0/5	]	1/5	1	1	L	1	0/5	
epithelium in limiting ridge	+	0/5	1	1	1	0/5		0/5	r * 2 5 4 1 1 1 5 4 1 1 1 5 5 5 5 5 5 5 5 5 5		1	1	1/5	
Glandular stomach														
No abnormalities detected		5/5	ł	1	ł	5/5	I	5/5	1	Į	1	1	5/5	
ta, terminal autopsy; fd, found dead														

- 77 -

a) Number of animals autopsied.
b) Number of animals affected / Number of animals examined.
-, Not examined.
±, very slight; +, slight; ++, moderate.

-1 - 1-

able 14-2 Twenty-eight-day repeated-dose oral toxicity study in rats	Summary of histopathological examinations
Tat	

•••

				Ma	e					ч	male			
Findings	Grade	Vehicle control	Vehicle control (Recovery)	5	55	125	125 (Recovery)	Vehicle control	Vehicle control (Recovery)	ŝ	5	5	125	125 (Recovery) (mg/kg/day)
		ta	ta	ta	ta	Ł	ta	ta	ta	ta	ta	fd	ta	ta
		5 ^{a)}	5	5	5	s	5	ŝ	5	5	4	1	ŝ	10
Duodenum														
No abnormalities detected		5/5 ⁴⁾	I	ł	1	5/5	1	5/5	ł	1	1	1	5/5	J
Jejunum														
No abnormalities detected		5/5	I	I	I	5/5	I	5/5	I	I	ł	I	5/5	1
Ileum														
No abnormalities detected		5/5	I	ł	1	5/5	ł	5/5	١	I	I	l	5/5	1
Cecum														
No abnormalities detected		5/5	l	I	ł	5/5	I	5/5	.	1	١	I	5/5	1
Colon														
No abnormalities detected		5/5	1	1	1	5/5	I	5/5	1	I	1	I	5/5	ţ
Rectum														
No abnormalities detected		5/5	1	t.	1	5/5	1	5/5	1	1	1	I	5/5	
Liver														
No abnormalities detected		5/5	5/5	5/5	5/5	0/5	5/5.	5/5	5/5	5/5	4/4	М	3/5	5/5
Diffuse hypertrophy of hepatocytes	+	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/4	1/0	2/5	0/5
Periportal hypertrophy of hepatocytes	÷	0/5	0/5	0/5	0/5	5/5	0/5	0/5	0/5	0/5	0/4	1/0	0/5	0/5
Periportal prominent nucleoli of hepatocytes	+	0/5	0/5	0/5	0/5	3/5	0/5	0/5	0/5	0/5	0/4	1/0	0/5	0/5
Single cell necrosis of hepatocytes	+	0/5	0/5	0/5	0/5	1/5	5/0	0/5	0/5	0/5	0/4	1/0	0/5	0/5
ta, terminal autopsy; fd, found dead														

a) Number of animals autopsied.
b) Number of animals affected / Number of animals examined.
-, Not examined.
+, slight.

Table 14-3 Twenty-eight-day repeated-dose oral toxicity study in rats Summary of histopathological examinations

				Ma	e					Fe	male				
Findings	Grade	Vehicle control	Vehicle control (Recovery)	. 2	25	125	125 (Recovery)	Vehicle control	Vehicle control (Recovery)	Ş	22		125	125 (Recovery)	(mg/kg/day)
		ta	ta	ち	ta	ta	ta	ta	ta	ta	ta	fà	ta	ta	
		5 ^{a)}	5	ŝ	5	5	\$	5	2	Ş	4	Ţ	ŝ	ŝ	
Heart															
No abnormalities detected		4/5 ^{b)}	5/5	1	1	4/5	5/5	5/5	1	ł	I	1	5/5	1	
Focal myocarditis	+	1/5	0/5	1	1	1/5	0/5	0/5		1	ł	1	0/5	1	
Kidney															
No abnormalities detected		2/5	5/5	5/5	5/5	3/5	3/5	3/5	3/5	4/5	4/4	1/1	4/5	5/5	
Ballooning of tubular epithelium	+	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/4	1/0	1/5	0/5	
Basophilic tubules	+	2/5	0/5	0/5	0/5	1/5	1/5	0/5	0/5	0/5	0/4	0/1	0/5	0/5	
Dilatation of tubules	+	0/5	0/5	0/5	0/5	1/5	0/5	0/5	0/5	075	0/4	0/1	0/5	0/5	
Focal hyperplasia of tubular epithelium	+	1/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/5	0/4	0/1	0/5	0/5	
Mineralization in cortico- medullary junction	+	0/5	0/5	0/5	0/5	0/5	0/5	2/5	2/5	1/5	0/4	1/0	0/5	0/5	
Solitary cyst in medulla	+	0/5	0/5	0/5	0/5	0/5	1/5	0/5	0/5	0/5	0/4	1/0	0/5	0/5	
Urinary bladder		E IE	)			212		212					5/5	!	
The T		cic	1							1			C i	i	
No abnormalities detected		5/5	5/5	1	0/1	5/5	5/5								
Diffuse atrophy of seminiferous tubules	‡	0/5	0/5	1	IVI	0/5	0/5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		9 9 9 7 7 7 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Leydig cell hyperplasia	‡	0/5	0/5	1	M	0/5	0/5								
Epididymis															
No abnormalities detected	1	5/5	1		ţ	5/5	ł								
ta, terminal autopsy; fd, found dead a) Number of animals autopsied. b) Number of animals affected / Nuu -, Not examined.	mber of	animals e	kamined.									•			
+, slight; ++, moderate; +++, severe															

- 79 -

y study in rats	
toxicit	
ed-dose oral	
day repeat	Internation
Twenty-eight-	13-1
14-4	
Table	

Sarawad Alarity to Common	TIMUS YMAY	CIT/ANTIN									ļ		
			M	ale					Б4	emale			
Findings Grad	Vehicle le control	Vehicle control (Recovery)	s	25	125	125 (Recovery)	Vehicle control	Vehicle control (Recovery)	Ś	3	S	125	125 (Recovery) (mg/kg/day)
	ta	ta	ta	ta	ta	ta	ta	ta	ta	ta	fd	ta	ta
	5 ^{a)}	Ş	5	ŝ	S	ŝ	5	5	S	4		ŝ	5
Prostate													
No abnormalities detected	4/5 ^{b)}	1	1	1	5/5	1		-					
Round cell infiltration +	1/5	I	1		0/5			7 3 5 6 6 6 6 7 5 1 L -	1 T T T				
Seminal vesicle													
No abnormalities detected	5/5	1	I	ł	5/5	ł							
Ovary													
No abnormalities detected							5/5	ſ	I	I	I	5/5	I
Uterus													
No abnormalities detected							4/5	ļ	I	1	I	5/5	-
Endometrial atrophy +			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 		1/5			1	I	0/5	
Vagina													
No abnormalities detected	1						3/5	ł	I	I	1	5/5	1
Mucification of epithelium		7 L I I I I I I I I I I I I I I I I I I	7 6 8 8 8 8 1 4		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		1/5		Í	1		0/5	
Vaginitis +		***			* * * * * *	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1/5		1	1		0/5	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Cerebrum													
No abnormalities detected	5/5	i	1	1	5/5	1	5/5	5/5	1	1	1	5/5	5/5
Cerebellum													
No abnormalities detected	5/5	I	I	1	5/5	1	5/5	5/5	1	1	1	5/5	5/5
Pons													
No abnormalities detected	5/5	t	I	1	5/5	I	5/5	5/5	1	1	1	5/5	5/5
Spinal cord													
No abnormalities detected	5/5	1	1	1	5/5	1	5/5	1	ł	1	•	5/5	
Sciatic nerve													
No abnormalities detected	5/5	1	I	1	5/5	1	5/5	ł	1	1	1	5/5	
<ul> <li>its, terminal autopsy; fd, found dead.</li> <li>a) Number of animals autopsied.</li> <li>b) Number of animals affected / Number (-, Not examined.</li> <li>+, slight; ++, moderate.</li> </ul>	of animals	examined.										•	

Twenty-eight-day repeated-dose oral toxicity study in rats	Summary of histopathological examinations
14-5	
Table	

				Ma	e					F	emale				
Findings	Grade	V ehicle control	Vehicle control (Recovery)	S.	25	125	125 (Recovery)	Vehicle control	Vehicle control (Recovery)	5	2	S	125	125 (Recovery) (mg/kg/d	day)
		R	ta	ta	ta	ta	ta	ta	ta	ta	ta	ų	ta	ta	
		5 ⁸⁾	3	S	ŝ	5	S	ŝ	5	5	4	ł	5	S	
Bone marrow												i			
No abnormalities detected		5/5 ^{b)}	1	1	I	5/5	I	5/5	l	1	l	ł	5/5	ł	!
Axillar lymph node															
No abnormalities detected		5/5	1	1	ł	5/5	I	5/5	1	1	I	I	5/5	I	
Mesenteric lymph node															
No abnormalities detected		5/5	ſ	I	۱	5/5	1	5/5	I	1	I	I	5/5	ł	
Spleen															
No abnormalities detected		5/5	1	τ	I	5/5	ł	5/5	1	ł	I	ł	5/5	1	
Thymus															
No abnormalities detected		5/5	1	1	1	5/5	I	5/5	1	ł	1	ļ	5/5	ł	
Pituitary gland															
No abnormalities detected		5/5	1	1	ł	5/5	ł	5/5	I	I	I	1	5/5	I	
Thyroid															ļ
No abnormalities detected		5/5	I	1	I	5/5	ł	5/5	1	ł	1	ł	5/5	0/1	
Aplasia of left lobe		0/5	1	1		0/5		0/5		1		1	0/5	· 1/1	
Parathyroid															
No abnormalities detected		5/5	ł	t	ł	5/5	ł	5/5	I	1	1	Ì	5/5	1	
Adrenal															
No abnormalities detected		5/5	1	1	í	5/5	ţ	5/5	1	1	1	I	5/5	-	
Eye ball															
No abnormalities detected		5/5	H	1	ļ	5/5	1	5/5	1	1	1	1	5/5	-	
ta, terminal autopsy; fd, found dead.															

a) Number of animals autopsied.
 b) Number of animals affected / Number of animals examined.
 -, Not examined.

#### Addendum 1-1 Twenty-eight-day repeated-dose oral toxicity study in rats Clinical signs of individual animals Vehicle control

			Administra	tion Period		Recover	y Period	
Signs	Sex	1	2	3	4	1	2	(week)
No abnormalities detected	Male	2, ^{a)} 4, 5, 6, 7, 8, 9	1, 2, 3, 4, 5, 6, 7,8,9, 10	1, 2, 3, 4, 5,6 [°] , 7, 8, 9	1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0	6,7,8, 9,10	6,7,8, 9,10	
	Female	31, <i>32</i> , 33,34, 35, 36, 37, 38, <u>39, 40</u>	31, 32, 33, 34, 35, 36, 37, 38, <u>39, 40</u>	31,32, 33,34, 35,36, 37,38, <u>39,40</u>	54, <i>3</i> 2, 33,34, 35,36, 37,38, <u>39,40</u>	36, 37, 38, 39, 40	36, 37, 38, 39, 40	
Salivation	Male	1,3,10		10				
	Female							******

a) Animal number.

.

#### Addendum 1-2 Twenty-eight-day repeated-dose oral toxicity study in rats Clinical signs of individual animals 5 mg/kg/day

		Administration Period			Recovery Period			
Signs	Sex	1	2	3	4	1	2	(week)
No abnormalities detected	Male	11, ^{a)} 12, 15	11,12, 1 3 ,14, 15	11,12, 13, 14, 15	11,12, 13, 14, 15			
	Female	42,43, 44	41, 42, 43, 44, 45	42,43, 1 4 , 4 5	42,43, 44,45			
Salivation	Male	13, 14						
	Female	41, 45		41	41			

· a) Animal number.

. .

#### Addendum 1-3 Twenty-eight-day repeated-dose oral toxicity study in rats Clinical signs of individual animals 25 mg/kg/day

Lo mg ng vuy								
·		Administration Period				Recovery Period		
Signs	Sex	]	2	3	4	1	2	(week)
No abnormalities detected	Male	16, ⁰ 17, 18, 19, <u>20</u>	16,17, 18, 19	18, 19	16, 18, 19,20			
	Female	47		48, 50	48			
Salivation	Male		20	16, 17, 20	17			
	Female	46, 48, 49, 50	46, 47, 48,49, 50	46, 47, 49	46, 47, 49, 50			
Decreased spontaneous locomotion	Male				17			
	Female							
Death	Male							
	Female				47			

a) Animal number.

•

...

## Addendum 1-4 Twenty-eight-day repeated-dose oral toxicity study in rats Clinical signs of individual ani mals 125 mg/kg/day

.....

			Administra	tion Period		Recovery	Period	
Signs	Sex	1	2	3	4	]	2	(week)
No abnormalities detected	Male	23 ^{a)}		22				
	Female	59, 60	58			59		4 ~ • • • • • • • • • • •
		21, 22,	21,22,	21,23,	21,22,			
		24, 25,	23,24,	24,25,	23,24,			
Salivation	Male	26, 27,	25,26,	26,27,	25, 26,			
		28, 29,	27, 28,	28,29,	27, 28,			
	********		29,30	30	29,30	*****	******	* - =
•		51, 52,	51, 52,	51, 52,	51,52,			
		53, 54,	53, 54,	53, 54,	53, 54,			
	remale	55, 56,	55, 56,	55, 56,	55, 56,			
		57, 58	57,60	57, 58,	57, 58,			
			· · · · · · · · · · · · · · · · · · ·	59,60	<u> </u>		·	
Decreased spontaneous locomotion	Male				24,25,			
	at an appropriate set of		53 54	56 50				
	Female		55, 54,	60	56			
Staining lower abdomen	Male							
<b>0</b>	Formalia		50					*****
	Tentale		J7				·····	
Swelling of third digit in left forelimb	Male		29	29	29	29		* * * * * * * * * * *
	Female							
White turbid urine	Male			29				
	Female							
Exudate(neck)	Male		28	28	28	28		
	Female							
Scab formation(neck)	Male					28		
	Famala							
•	remaie							
						26, 27,	26,27,	
Mottled teeth	Male					28,29,	28, 29	,
						30	30	
	Formato					56, 57,	20, 27,	
	L CITIBIC					58,60	20,29,	•
	*****		····	······································	······	26.28	26.28	
Whitish change of teeth	Male					20,20, 79 30	20, 20, 20, 20	
			************	•			56. 57.	*********
	Female					56, 57,	58.59	•
						60	60	
Surface de lamination of tip lower	Male			,		•		
24769 42 WU	Female					******	56, 57	

a) Animal number.

•

	Detailed clinical observations of individual animals (Predosing)					
Ser	Exp.group	Animal No.	Removal f	rom cage		
Sex	(mg/kg/day)	Addiniai No. 1	Ease of removal	Vocalization		
•		1	0	+1		
		2	0	0		
		3		0		
		4	0	0		
	Vehicle	5	0	0		
	control	6	0	0		
		7	0	0		
		8	0	0		
		9	0	0		
		10	0	+1		
		11	0	0		
		12	0	+1		
	5	- 13	0	0		
		14	0	0		
		15	0	0		
маю		16	0	0		
		17	0	0		
	25	18	0	0		
		19	0	0		
		20	0	0		
		21	0	0		
		22	0	0		
		23	0	0		
		24	0	0		
	105	25	0	0		
	125	26	0	0		
		27	0	0		
		28	0	0		
		29	0	0		
		30	+1	0		

Addendum 2-1 Twenty-eight-day repeated-dose oral toxicity study in rats

B11-0836

æ

Detailed clinical observations of individual animals (Predosing)					
Sex	Exp.group	Animal No.	Removal 1	rom cage	
	(mg/kg/day)		Ease of removal	Vocalization	
		31	0	0	
		32	0	0	
		33	0	0	
		34	0	+1	
	Vehicle	35	0	0	
	control	36	0	0	
		37	0	0	
		38	0	0	
		39	0	0	
		40	0	0	
	<u></u>	41	0	+1	
		42	0	0	
	5	43	0	0	
		44	0	0	
Fomala		45	+1	+1	
remale		46	0	0	
		47	0	+1	
	25	48	0	+1	
	•	49	0	0	
		50	0	0	
		51	0	0	
		52	0	0	
		53	0	0	
		54	0	0	
	12.6	55	0	0	
	. 125	56	0	0	
		57	0	0	
		58	0	0	
		59	0	0	
		60	0	0 -	

Addendum 2-2 Twenty-eight-day repeated-dose oral toxicity study in rats

- 87 -

Sev	Exp group	Animal No	Removal f	Removal from cage		
362	(mg/kg/day)	Automat NO.	Ease of removal	Vocalization		
		1	0	0		
		2	0	0		
		3	0	+1		
		4	0	0		
	Vehicle	5	0	0		
	control	6	0	0		
		7	0	+1		
		8	0	0		
		9	0	0		
		10	0	+1		
		11	0	0		
		12	0	0		
	5	13	0	0		
		14	0	0		
Mala		15	0	+1		
Maic		16	0	0		
		17	0	0		
	25	18	0	0		
-		19	0	0		
		20 ~	0	+1		
		21	0	0		
		22	0	0		
		23	0	0		
		24	0	0		
	125	25	0	0		
	12.5	26	0	0		
		27	0	0		
		28	0	0		
		29	0	0		
		30	0	0		

Addendum 2-3 Twenty-eight-day repeated-dose oral toxicity study in rats

B11-0836

	Detailed clinical observations of individual animals (week 1)					
Sav	Exp.group	Animal No	Removal from cage			
JUX	(mg/kg/day)	Alinikai INU.	Ease of removal	Vocalization		
		31	0	0		
		32	0	+1		
		33	0	0		
		34	0	0		
	Vehicle	35	0	0		
	control	36	0	0		
		37	0	0		
		38	0	0		
		39	0	+1		
		40	0	0		
		41	0	+1		
		42	0	0		
	5	43	0	0		
		44	0	0		
Formata		45	0	+1		
remate		46	0	0		
		47	0	0		
	25	48	0	+1		
		49	0	0		
		50	0	0		
	,	51	0	0		
		52	0	0		
		53	-1	0		
		54	0	+1		
	to 5	· 55	0	0		
	125	56	0	0		
		57	0	0		
		58	+1	0		
		59	0	0		
		60	0	0		

Addendum 2-4 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)

Bl1-0836

G	Exp.group	A	Removal f	Removal from cage		
Sex	(mg/kg/day)	Anunai No.	Ease of removal	Vocalization		
	······································	1	0	· 0		
		2	0	0		
		3	0	0		
		4	0	0		
	Vehicle	5	0	+1		
	control	. 6	0	0		
		7	0	0		
		8	0	0		
		9	0	0		
		10	0	0		
		11	0	+1		
		12	0	0		
	5	13	0	0		
		14	0	0		
Mala	-	15	0	0		
IVIAIC	·····	16	0	0		
		17	0	0		
	25	18	0	0		
		19	0	0		
		20	0	0		
		21	0	0		
		22	0	0		
	•	23	0	. 0		
		24	0	0		
	125	25	0	0		
		26	0	0		
		27	0	0		
		28	0	0		
		29	0	0		
		30	0	0		

Addendum 2-5 Twenty-eight-day repeated-dose oral toxicity study in rats

Bil-0836

	Detailed clinical observations of individual animals (week 2)						
Cav	Exp.group	Animal No	Removal f	rom cage			
BUX	(mg/kg/day)	g/kg/day) Ease of removal	Vocalization				
		31	0	0			
		32	0	+1			
		33	0	0			
		34	0	+1			
	Vehicle	35	0	+1			
	control	36	0	0			
		37	0	0			
*		38	0	0			
		39	0	+1			
		40	0	0			
		41	0	0			
		42	0	0			
	5	43	0	0			
		44	0	0			
Famala		45	0	0			
remaie		46	0	0			
		47	0	+1			
	25	48	0	+1			
		49	0	0			
		50	0	+1			
		51	0	0			
		52	0	0			
		53	0	0			
		54	0	+1			
	105	55	0	0			
	125	56	0	0			
		57	0	0			
		58	0	0			
		59	0	0			
		60	0	0			

÷

Addendum 2-6 Twenty-eight-day repeated-dose oral toxici ty study in rats

	Detailed clinic	of individual animal	hals (week 3).		
Sex	Exp.group	Animal No.	Removal from cage		
	(mg/kg/day)		Ease of removal	Vocalization	
		1	0	+1	
		2	0	0	
		3	0	0	
		4	0	0	
	Vehicle	5	0	+1	
	control	6	0	0	
		7	0	0	
		8	0	0	
		9	0	0	
		10	0	0	
•		. 11	0	0	
		12	0	0	
	5	13	0	0	
		14	0	0	
34-1-		15	0	0	
wate		16	0	0	
		17	0	0	
	25	18	0	0	
		19	0	0	
		20	0	0	
	4-912-1-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	21	0	0	
		22	0	0	
		23	0	0	
		24	0	0	
	105	25	0	0	
	125	26	0	0	
		27	0	0	
		28	0	0	
		29	0	0	
		30	0	0	

Addendum 2-7 Twenty-eight-day repeated-dose oral toxicity study in rats

Cov	Exp.group	Animal No.	Removal f	rom cage
Sex	(mg/kg/day)	Antiniai INU,	Ease of removal	Vocalization
		31	0	0
		32	0	0
		33	0	0
		34	0	+1
	Vehicle	35	0	0
	control	36	0	0
		37	0	+1
		38	0	0
		39	0	+1
		40	0	0
		41	0	+]
		42	0	0.
	5	43	0	+1
		44	0	0
Famala		45	0	0
remaie		46	0	0
		47	0	0
	25	48	0	0
		49	0	0
		50	0	0
		51	0	0
		52	0	0
		<b>53</b> ·	0	0
		54	0	0
	125	55	0	0
	140	56	0	0
		57	0	0
		58	0	0
		59	0	0
		60	0	0

Addendum 2-8 Twenty-eight-day repeated-dose oral toxicity study in rats

	Detailed clinical observations of individual animals (week 4)					
Sau	Exp.group	îrom cage				
Sex	(mg/kg/day)	Aniniza No. 1	Ease of removal	Vocalization		
		)	0	0		
	·	2	0	0		
		.3	0	+1		
		4	0	+1		
	Vehicle	5	0	0		
	control	6	0	0		
		7	0	0		
		8	0	0		
		9	0	0		
		10	0	0		
		11	0	0		
		12	0	0		
	5	13	0	0		
	5	14	0	0		
		15	0	+1		
Male		16	0	0		
		17	0	0		
	25	18	0	0		
		19	0	0		
		20	0	0		
	************************************	21	0	· 0		
		22	0	0		
		23	0	0		
		24	0	0		
	*	25	0	0		
	12.5	26	0	0		
		27	0	0		
		28	0	0		
		29	0	0		
		30	0	0		

Addendum 2-9 Twenty-eight-day repeated-dose oral toxicity study in rats

BI1-0836

Sav	Exp.group	Animal No	Removal f	rom cage
Sex	(mg/kg/day)	Anniai No. •	Ease of removal	Vocali zation
		31	0	0
		32	0	0
		33	0	0
		34	0	+1
	Vehicle	35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
	control	36	0	0
		37	0	+1
		38	0	0
		39	0	+1
		40	0	0
	· · ·	41	0	0
	·	42	0	0
	5	43	0	+1
		44	0	0
Eample		45	Removal from cage           Ease of removal         Vocali           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0	0
remate		46	0	0
		47 ^{a)}		
	25	48	0	+1
Female		49	0	0
		50	0	0
		51	0	0
		52	0	0
		53	0	0
		54	0	0
	125	55	0	0
	<u>,</u> 200-4	56	0	0
		57	0	0
		58	0	0
		59	0	0
•		60	0	0

Addendum 2-10 Twenty-eight-day repeated-dose oral toxicity study in rats

Con	Exp.group	A	Removal f	rom cage
Sex	(mg/kg/day)	Animai No.	Ease of removal	Vocalization
		6	0	0
		7	0	0
	Venicle	8	0	0
Male	control	9	0	0
		10	0	0
	,	26	0	0
		27	0	0
	125	28	0	0
		29	0	0
		30	0	0

Addendum 2-11 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 1)

Cont	Exp.group	An incluic	Removal f	rom cage
Sex	(mg/kg/day)	Animai No.	Ease of removal	Vocalization
		36	0	0
	Vehicle control	37	0	0
		38	0	0
		39	0	+]
Formato		40	0	0
remaie		56	0	0
		57	0	0
	125	58	0	0
		59	0	0
		60	0	0

Addendum 2-12	Twenty-eight-day repeated-dose oral toxicity study in rats
	Detailed clinical observations of individual animals (Recovery week 1)

<b>C</b>	Exp.group	Amimul Ma	Removal f	from cage	
Sex	(mg/kg/day)	Annai No, •	Ease of removal	Vocalization	
		6	0	0	
		7	0	0	
	control	8	0	0	
		9	0	0	
N/a1a		10	9 0 10 0	+1	
IVIAIC	. <u> </u>	26	0	0	
		27	0	0	
	125	28	0	0	
		29	0	0	
		30	0	0	

.

Addendum 2-13 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 2)

BI1-0836

e	Exp.group	Amimalble	Removal from cage			
Jex.	(mg/kg/day)	Annanio,	Ease of removal	Vocalizati on		
	Vehi.cle control	36	0	0		
		37	0	+1		
		38	0	0		
		39	0	+1		
Eemala		40	0 +1 0 0	0		
remaie	125	56	0	0.		
		57	0	+1		
		58	0	0		
		59	0	0		
		60	0	0		

Addendum 2-14 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 2)

			Handling observations							
Sex	Exp.group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening	
	(mg/kg/day)		tone	temperature		hair	hair			
		1.	0	-	*	-	-	-		
		2	0	-	-	-	-	-	-	
		3	0	-	-	-	-	-	-	
		4	0	-	•	-	-	-	-	
~.	Vehicle	. 5	. 0	-	-	-	-	-		
	control	6	0	-	-	-	-	-	-	
		7	0	-	-	-	-	-	-	
		8	0	-	-	-	-	-	-	
		9	0	-	-	-	-	-	-	
		10	0	-	-	-	r	-	-	
		11	0	-		-	-	-	-	
		12	0	-	-	-	-	-	-	
	5	13	0	-	-	-	-	-	-	
		14	0	-	-	-	-	-	-	
Mala		15	0	-	#	-	-	-	-	
Male		16	0	-		-	-	-	*	
		17	0	-	-	-	-	-	-	
	25	18	0	-	-	-	-	-	-	
		19	0	-	-	-	-	-	-	
		20	0	-	••	-	м	-		
		21	0	-	-	+	-	-	-	
		22	0	-	-	-	-	-	-	
		23	0	-	-	-	-	-	-	
		24	0	-	-	-	-	-	-	
	125	25	0	-		-	-	-	-	
	123	26	0	-	-	-	-	-	-	
		27	0	-	-	-	-	-	-	
		28	0	-	-	-		-	-	
		29	0	-	-	-	-	-	*	
		30	0	-	-	<del>.</del>	-	-	-	

.

## Addendum 2-15 Twenty-eight-day repeated-dose oral toxicity study in rats

#### Detailed clinical observations of individual animals (Predosing)

B11-0836

....

· ·

		_			Hand	lling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	<b>Piloerection</b>	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		31	0	-	-	-	-	-	-
		32	0	-	-	-	-	-	-
		33	0	-	-	-	-	-	-
		34	0	-	-	-	-	-	-
	Vehicle	35	0	-	-	-	-	-	-
	control	36	0	-	-	-	-	-	-
		37	0	-	-	-	-	-	-
		38	0	-	-	-	*	-	-
		39	0	-	-	-	-	-	-
		40	0	-	-	-	-	-	-
		41	0	-	-	-	-	•	-
		42	0	-	-	-	-	+	-
	5	43	0	-	-	-	-	-	•-
		44	0	-	-	-	-	-	-
Pomelo		45	0	-	-	-	-	-	-
remaie	·	46	0	-	-	-	• ·	-	-
		47	0	-	-	-	-	-	-
	25	48	0	-	-	-	-	-	-
		49	0	-	~	-	_	-	-
		50	0	-	-	-	-	-	-
		. 51	0		-			-	-
		52	0	-	-	-	-	-	-
		53	0	-	-	-	-	-	-
		54	0	-	-	-	-	-	-
·	10.6	55	0	-	-	-	-	-	-
	125	· 56	0	-	-	-	-	-	-
		57	0	-	-	-	-	-	-
		58	0	-	-	-	-	-	-
		59	0	• .	-	-	-	-	-
		60	0		-	-	-	-	-

## Addendum 2-16 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Predosing)

•. .

.

# B11-0836

	Handling observations								
Sex	Exp. group	Animal No.	Muscle	Subnormal	Pilocrection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		1	0	-		-	-	-	-
		2	0	-	-	-	-	-	-
		3	0	-	-	-	-	-	-
		4	0	-	-	-	-	-	-
	Vehicle	5	0	-	-	-	-	-	-
	control	6	0	-	-	-	-	-	-
		7	0	-	-	~	· -	-	-
		8	0	-	-	- <b>-</b>	-	-	` <del>-</del>
		9	0	-	-	<b>~</b> `	-	-	-
		10	0	-	<b>4</b> 0	<b></b>	-	-	**
		11	0	- ·	-	-	-	-	-
	5	12	0	-	-	-	-	-	-
		13	0	-	-	-	-	-	-
		14	0	-	-	-	-	-	-
Male		15	0	-	-	-	-	-	-
IVALUE		16	0	-		-	-	-	-
		17	0	-	-	-	-	-	-
	25	18	0	-	-	-	-	-	-
		19	0	-	<del>.</del>	-	-	-	-
		20	0	-	-		-	-	
		21	0	-	-	-	-	-	-
		22	0	-	-	-	-	-	-
		23	0	-	-	-	· •	-	- '
		24	0	-	-	-	•	-	-
	125	25	0	-	-	-	-	-	
	120	26	0	-	-	-	-	-	-
		27	0	-	-	-	-	-	-
		28	0	-	-	-	-	-	-
		29	0	-	-	-	*	-	-
		30	0	-	-	-	-	-	-

Addendum 2-17 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)
					Hand	iling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		31	0		-	-	-	-	-
		32	0	* <b></b>	-	-	-	-	-
		33	0	-	-	-	-	-	-
		34	0	-	-	-	-	-	-
	Vehicle	35	0	-	-	-	-	-	-
	control	36	0	-	-	-	-	-	-
		37	0	-	-	-	-	-	-
		38	0	-	-	-	-	-	-
		39	0	-	-	-	•	-	-
		40	0	<b>14</b>	•••	-	-	<del></del>	-
		41	0	-	-	-	-	-	-
		42	0	<b>.</b>	-	-	-	-	-
	5	43	0	-	-	-	-	-	-
		44	0	-	-	-	-	-	-
Female		. 45	0	**	•	•			-
		46	0	~	-	-	-	-	-
	•	47	0	-	-	-	-	-	-
	25	· 48	0	-	•	-	-	•	-
		49	0	-	*	-	-	-	**
	-Marcaloge - Marcaloge - Ma	50	0	-	*	-	<b>-</b>	+	-
		51	0	-	-	-	-	-	-
		52	0	-	-	-	-	-	-
		53	0	-	~	-	-	-	~
		54	0	-	-	-	-	-	-
	125	55	0	-	-	-	-	-	•
	-	56	0	-		-	-	-	-
		<b>57</b> ·	0	-	-	-	-	-	-
		58	0	-	-	-	-	-	~
		59	0	-	-	-	-	-	-
		60	0	-	-		-	-	-

#### Addendum 2-18 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)

					Hand	lling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		1	0	*	•	-	-		-
		2	0	-	-	-	-	-	-
		3	0	-	-	-	-	-	-
		4	0	-	~		-	-	-
	Vehicle	5	0	-	-	-	•	-	-
	control	6	0	-	-	-	-	-	-
		7	0	-	-	-	-	-	-
		8	0	-	-	-	-	-	-
		9	0	-	-	-	-	-	
		10	0	-	-	-	*	~	-
		11	0	-	-	-	*	-	-
		12	0	-	-	-	-	· -	. –
	5	13	0	-	-	-	-	-	-
		14	0	*	-	-	-	-	~
Mala		15	0	-	-	*		~	-
wian		16	0	-	-	-	-	-	-
		17	0	-		-	-	-	-
	25	18	0	-	-	-	-	-	-
		19	0	-	-	-	-	-	-
		20	0	-	-	-	*	-	-
		21	0	-	-	-	-	-	-
		22	0	-	-	-	-	-	-
		23	0	-	-	-	-	-	-
		24	0	-	-	-	-	-	-
	125	25	0	-	-	-	-	-	
	145	26	0	-	-	-	-	-	-
		27	0	-	-	-	-	-	-
		28	0	-	-	-	-	-	-
		29	0	-	-	-	-	-	-
		30	0	-	<b>_</b> ·	-	-	-	_

# Addendum 2-19 Twenty-eight-day repeated-dose oral toxicity study in rats

Bil-0836

a desire a

					Hand	lling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerec tion	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair	•	
		31	0	-	-	-	-	-	-
		32	0	· -	-	•	-	-	-
		33	0	-	-	-	-	-	-
		34	0 .	-	-	-	-	-	-
	Vehicle	35	0	-	-	-	-	-	-
	control	36	0	-	-	-	-	-	~
		37	0	-	-	-	÷	-	-
		38	0	-	-	-	-	-	-
		39	0	-	-	-	-	-	<del>.</del>
		40	0			•	-	-	+
		41	0	-	-	-	-	-	-
		42	0	-	-		-	-	-
	5	43	0	-	-	-	-	-	
		44	0	-	-	-	-	-	-
Female		45	0	*		••	<u></u>	-	-
		46	0	÷	-	-	-	-	-
		47	0	-	-	-	-		<b>~`</b> `.
	25	48	0	-	<b>-</b> .	-	-	-	-
		49	0	-	-	-	-	-	-
		50	0			*		-	•
		51	0	-	-	-	-	-	-
		52	0	-	-	-	-	-	-
		53	0	•	-	-	-	-	-
		54	0.	-	-	-	-	-	
	12.5	55	0	-	-	-	-	-	-
		56	0		-	-	-	-	-
		57	0	-	-	-	-	-	-
		58	0	-	-	•	~	-	~
		59	0	-	-	-	-	-	-
		60	0	-	-	-	-	-	-

## Addendum 2-20 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2)

					Hand	lling observa	tions	******	
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		1	0	-	-	-		-	-
		2	0	-	-	-	-	-	-
		3	0	-	-	-	-	-	-
		4	0	-	-	-	-	-	-
	Vehicle	5	0	-	-	-	-	-	-
	control	6	0	-	-	-	•	-	-
		7.	0	-	-	-	-	-	-
		8	0	-	-	-	-	-	-
		9	0	-	-	-	+	-	-
		10	0		•	*	•	-	-
		11	0	-		-	-	-	-
		12	0	-	-	-	-	-	-
	5	13	0	-	-	-	-	-	-
		14	0	•	-	-	-	-	-
Male		15	0	-	-	-	-	-	
		16	0	-	-	÷4	-	-	-
		17	0	-	-	-	-	-	-
	25	18	· 0	-	-	-	-	-	-
		19	0	-	-	-	-	-	-
		20	Ó	-	*		*	-	+
		21	0	-	-	-	-	-	-
		22	0	-	-	-	-	-	-
		23	0	-	-	-	-	-	-
		24	0	-	-	-	•	-	-
	125	25	0	-	-	-	-	-	-
		26	0	-	-	-	-	-	-
		27	0	-	-	-	-	-	-
		28	0	-	-	-	-	-	-
		29	0	-	-	-	-	-	-
		30	0	-	-	-	-		-

#### Addendum 2-21 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 3)

.

...

					Hand	lling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddeni.ng
	(mg/kg/day)		tone	temperature		hair	hair		
		31	0	-	-	-			-
		32	0	-	-	-	-	-	-
		33	0	-	-	-	-	-	-
		34	0	-	-	-	• –	-	-
	Vehicle	35	0	-	-	-	-	-	-
	control	36	0	-	-	-	-	-	-
		37	0	-	-	-	-	-	-
		38	0	-	-	-	-	-	-
		39	0	-	-	-	-	-	-
		40	0	-	-	-	-	÷.	-
		41	0	-	-	, <del>-</del>	-	-	-
		42	0	-	-	-	-	-	-
	5	43	0	•	-	-	-	-	-
		44	0	-	-	-	· •	-	-
Female	14 JULI	45	0	-	-	- ·	-	-	· -
Loundio		46	0	-	-	-	-	-	-
		47	0	-	-	-	-	-	-
	25	48	0	<del>-</del> -	-	-	-	-	-
		49	0	-	-	-	-	-	-
		50	0	-	-	-	-	-	-
	•	51	0	-	-	-	-	-	
		52	0	-	-	-	-	-	-
		53	0	-	-	-	-	-	-
		54	0	-	-	-	-	-	-
	125	55	0	-	-	-		-	-
	2600	56	0	-	-	-	-	-	-
		57	0	- `	-	-	-	-	-
		58	· 0	-	-	-	-	-	-
		59	0	-	-	-	-	-	-
		60	0	-	-	-	-	-	-

### Addendum 2-22 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 3)

B11-0836

.

					Hand	ling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		1	0	-	-	-	-	-	-
		2	0	-		-	-	-	-
		3	0	-	•	-	-	• •	-
		4	0	-	-	-	-	-	-
	Vehicle	5	0	-	-	-	-	-	-
	control	6	0		-	~	-	-	-
		7	0	-	-	-	-	-	-
		8	0	-	-	-	-	-	-
		9	0	-	-	-	-	-	-
		10	0	-	-		•	*	-
		11	0	-	-	-	-	-	-
		12	0	-	-	-	-	-	-
	5	13	0	-	-	-	-	-	-
		14	0	-	-	-	-	-	-
Male		15	0	-	-	+	-	-	-
		16	0.		-	-	-	-	-
		17	0	-	-	-	-	-	-
	25	18	0	-	-	-	-	-	•
		19	0	-	-	-	•	-	-
•	<u></u>	20	0	**			<b></b>	• ·	•
		21	0	-		-	-	-	-
		22	0	-	-	-	-	-	-
		23	0	-	-	-	-	-	-
		24	0	-	-	-	-	-	-
	125	25	0	-	-	-	-	-	-
	-	26	0	-	-	-	-	-	-
		27.	0	-	-	-	-	-	-
		28	0	-	-	-	-	-	-
		29	0	-	-	-	-	-	-
		30	0	-	-	-	-		-

Addendum 2-23 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

# B11-0836

••

					Hand	ling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		31	0	-	-	-	•	-	-
		32	0	-		-	-	-	<b>-</b> '
		33	0	-	-	-	-	-	-
		34	0	-	-	-	-	-	-
	Vehicle	35	0	-	-	-	-	· -	-
	control	36	0	-	-	-	-	-	-
		37	0	-	-	-	-	-	-
		38	0	-	-	-	-	-	-
		39	0	-	-	-	-	-	-
		40	0	-	•	-	-	-	-
		41	0	-	•	-		-	-
		42	0	-	-	-	-	-	-
	5	43	0	-	-	-	-	-	-
		44	0	-	-	-	-	-	-
Female		45	0	•	-	-	*	-	-
i cinaic		46	0	-	-	-	•	-	-
		47 ^{a)}			—			•	
	25	48	0	-	-	-	-	-	-
		49	0	-	•	-	•	-	-
		50	0	*	*	-	-	-	-
	·	51	0	-	-	-	-	-	•
		52	0	-	-	-	•	-	-
		53	0	-	-	-	-	-	-
		54	0	-	-	-	-	-	-
	125	55	0	-	-	-	**	-	-
	123	56	0	-	-	-	-	-	-
		57	0	-	-	-	-	-	-
		58	0	-	-	-	-	-	-
		59	0	-	-	-	-	-	
		60	0	-	-	-	-		-

## Addendum 2-24 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

#### B11-0836

a) Dead animal.

					Hand	lling observa	tions		
Sex	Exp.group (mg/kg/day)	Animal No.	Muscle tone	Subnormal temperature	Piloerection	Staining hair	Unkempt hair	Paleness	Reddening
		6	0	-		-		-	-
		7	0	-	-	-	-	-	-
	control	8	0	-	-	-	-	<b>≁</b> .	-
	004405	9	0	-	-	-	-	-	-
Vale		10	0	-	-	-	-	-	
Maic		26	0	-	•	-	-	-	*
		27	0	-	-	-	-	-	-
	125	28	0	-	•	-	-	-	-
		29	0	-	-	-			-
		30	0	-	-	-	-	-	-

#### Addendum 2-25 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery we

# B11-0836

- 110 -

					Hand	ling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		36	0		Lin.	-	-	-	•
		37	0	•	-	-	-		-
	venicie	38	0	-	-		-	-	-
	Soutor	39	0	-	*	-	-	-	-
Female		40	0	-	-	*	-	-	-
remaie		56	0	-		-	*	-	-
		57	0	-		-	-	-	-
	125	58	0	-	-	-	-	-	-
		59	0	-	-	-	-	-	-
		60	0	-		-	-	-	-

Addendum 2-26 Twenty-eight-day repeated-dose oral toxicity study in rats

# B11-0836

- 111 -

					Hand	lling observa	tions		
Sex	Exp.group	Animal No.	Muscle	Subnormal	Pilocrection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		6	0	-	-		-	-	-
		7	0	-	-	-	-	-	-
	Vehicle	8	0	-	-	-	-	-	-
	condor	9	0	-	-	-	-	-	-
Mala		10	0	-	-	-	•	-	-
Male		26	0	-	-	-	-	• •	-
		27	0	-	-	-	-	-	-
	125	28	0	-	-	-	-	-	-
		29	0	-	-	-	-	-	-
		30	0	-	-	-	-	-	_

# Addendum 2-27 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 2)

••

# B11-0836

- 112 -

.

	Detailed clinic	al observation	ns of individ	lual animals (R	ecovery week	2)			
		_		· · · ·	Hand	lling observa	tions		
Sex	Exp. group	Animal No.	Muscle	Subnormal	Piloerection	Staining	Unkempt	Paleness	Reddening
	(mg/kg/day)		tone	temperature		hair	hair		
		36	0	-		-	*	-	-
		37	0	-	-	-	-	-	-
	Vehicle	38	0	-	-	-	-	•	-
	COIRIOI	39	0	-	-	+	-	-	-
<b>T1</b> .		40	0	-	-		-	-	-
remaie		56	0	*		-		······································	-
		57	0	-	-	-	-	<b>-</b> 1	-
	125	58	0	-	~	~	-	-	-
		59	0	-	-	-	~	-	-
		60	0	-	-	-	<b></b>	-	-

Addendum 2-28 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery weat

.

# BI1-0836

- 113 -

.

			19		Handling obs	ervations		
Sex	Exp.group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)		······································			size		
		1	-	-	-	0	-	-
		2	-	-	-	0	-	-
		3	-	**	-	0	-	-
		4	-	-	-	0	-	-
	Vehicle	5	-	-	-	0	-	-
	control	6	-	-	-	0	-	-
		7	-	-	-	0	-	-
		8	-	-	-	0	<del>-</del> ,	-
		9	-	-	-	0	-	-
		10	-	-	-	0	-	-
	• .	11		-	-	0	*	-
		12	-	-	· -	0	-	-
	5	13	-	-	-	0	-	-
		14	-	-	<b>~</b> .	0	-	-
Male		15	-	-	<b>-</b> .	0	-	-
Wate		16	-	*	-	0	-	-
		17	-	-	-	0	-	-
	25	18	-	-	-	0	-	-
		19	-	-	-	0	-	-
		20	-	-	-	0	-	-
		21	-	-	-	0	-	-
		22	-	-	-	0	· -	-
		23	-	~	•	0	-	-
		24	-	-	-	0	-	-
	125	25	-		-	0	-	-
	12.5	26	-	-	-	0	-	-
		27	-	-	-	0	-	-
		28	-	-	-	0	-	*
		29	-	-	-	0	-	-
		30	-		-	0	-	-

#### Addendum 2-29 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Predosing)

		_			Handling obs	ervations		
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
		31	-	-	-	0	-	-
		32	-	-	-	0	-	-
		33	· -	-	-	0	-	-
		34	-	-	-	0	-	-
	Vehicle	35	-	-	-	0	-	-
	control	36	-	-	-	0	·· .	-
		37	-	-	-	0	-	-
		38	-	-	-	0	-	-
		39	-	-	-	0	-	-
		40	-	-	-	0	~	-
		41	-	-	-	0	-	-
		42	-	-	•	0	-	-
	5	43	-	-	-	0	-	-
		44	• -	-	-	0	÷.	-
Formalia		45	-			0	•	-
remale	<u></u>	46	-	-	-	0		-
		47	-	-	-	0	-	-
	25	48	_	-	-	0	-	-
		49	-	-	-	0	-	-
:		50	-	•	<del>.</del> .	0	-	-
		51	-	•	=	0	-	-
		52	-	-	-	0	-	-
		53	-	-	-	0	-	-
		54	-	-	-	0	-	-
	105	55	-	-	-	0	-	-
	125	56	-	-	-	0	-	-
		57	-	-	-	0	-	-
		58	-	-	-	0	-	-
		59	-	-	-	0	-	-
		60	-	-	-	0	-	-

#### Addendum 2-30 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Predosing)

					Handling obs	ervations		
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
		1	-	-	-	0	-	-
		2	-	-	-	0	~	-
		3	-	-	-	0	-	-
		4	-	-	-	0	-	-
	Vehicle	5	-	-	-	0	-	-
	control	6	-	-	-	0	-	-
		7	<b>••</b> *	-	-	0	-	-
~ *		8	-	-	-	0	-	-
		9	-	-	-	0	-	-
		10	. •	-	*	0	-	-
		11	-	-	-	0	-	-
		12	-	-	-	0	-	-
	5	13	-		-	0	-	-
		14	-	-	-	0	-	-
Male	<u> </u>	15	-	•	-	0		-
IVIAIC		16	-	-	-	0	-	-
		17	-	-	-	0	-	-
	25	18	-	-	-	0	-	-
		19	-	-	-	0	-	-
		20		-		0	-	-
		21	-	•	-	0	-	-
		22	-	-	-	0	-	-
		23	• –	-	-	0	-	-
		24	-	-	-	0	-	-
	125	25	-	•	-	0	-	-
	123	26	-	-	-	0	-	-
		27	-	-	-	0	-	-
		28	-	-	-	0	-	-
		29	-	-	-	0	-	-
		30	-	· •	-	0	••	-

## Addendum 2-31 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)

					Handling obs	ervations	·······	
Sex	Ехр. дтоир	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
		31	· •	-	-	0	-	-
		32	-	-	-	0	-	-
		33	-	-	-	0	-	-
		34	-	-	-	0	-	-
	Vehicle	35	-	-	-	0	-	-
	control	36	-	-	-	0	-	-
		37	-	-	-	0	-	-
		38	-	-	-	0	-	-
		39	-	-	-	0	-	-
		40	-	-		0	-	-
		41	-	۲	-	0	-	-
		42	-	-	-	0	-	-
	5	43	-	-	-	0	-	-
		44	-	-	-	0	-	-
Female		45	*	-	-	0	-	-
1 canalç		46	-	-	-	0	-	-
		47	-	-	-	0	-	-
	25	48	-	-	-	0	-	-
		49	-	-	-	0	-	-
		50	-	-	-	0	-	-
		51	-	-	-	0	-	-
		52	-	-	-	0	-	-
		53	-	-	-	0	-	-
		54	-	-	-	0		-
	175	55	-	-		0	· •	-
	123	56	-	-	-	0	-	-
		57	-	-	-	0	-	-
		58	-	-	-	0	-	-
		59	-	-	-	0	-	-
		60	<b>_</b> .	-	-	0	-	-

Addendum 2-32 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1) BII-0836

		Handling observations								
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion		
	(mg/kg/day)					size				
		1	-	-		0	-	-		
		2	-	-	-	0	-	-		
		3		-	-	0	-	-		
		4	-	-	-	0	-	-		
•	Vehicle	5	-	-	-	0	-	-		
	control	6	-	-	-	0	-	-		
		7	-	-	-	0	-	-		
		8	-	-	-	0	-	-		
		9	-	-	-	0	-	-		
		10	-	-	-	0	-			
	<b></b>	11	-	-	<del>~</del> .	0	-			
		12	-	-	-	0	-			
	5	13	-	-	-	0	-	-		
		14	-	-	-	0	-	-		
		15	-	-	-	0	· _	-		
Male	·	16	-	-		0	-	-		
		17	<b></b> '	-		0	-	-		
	. 25	18	-	-	-	0		-		
		· 19	-	-	-	0	-	-		
		20	-	-	-	0	-	-		
		21	÷		-	0	-			
		22	-	-	-	0	~	`-		
		23	-	-	-	0	-	-		
		24	-	-	-	0	- <b>-</b>	-		
		25	-	-	-	0	-	-		
	125	26	-	-	•	0	-	-		
		27	-	-	-	0	-	-		
		28	-	-	-	0	-	-		
		29	-	-	_	0	-	-		
		30	_	-	_	0 0	_	_		

Addendum 2-33 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2)

...

----

					Handling obs	ervations		
Sex	Exp.group	AnimalNo.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
•		31	-	-	-	0	-	-
		32	-	-	-	0	-	-
		33	-	-	-	. 0	-	-
		34	-	-	-	0	-	-
	Vehicle	35	-	-	-	0	-	-
	control	36	-	-	-	0	-	-
		37	-	-	-	0	-	-
•		38	-	-	-	0		-
		39	-	-	-	0	-	-
		40		-	-	0	-	-
		41	-	-	-	0	-	
		42	-	-	-	0	<b>`</b> =	- '
	5	43	-	-	-	0	-	-
		44	-	-	-	0	-	-
Female		45	-	-	-	0	-	-
I GILAIG		46	-	-	-	0	-	-
		47	-	-	-	0	-	-
	25	48	-	-	-	0	-	
		49	-	-	-	0	-	-
		50	-	-	-	0	-	-
		51	-	-	-	0	•	~
		52	• -	-	-	0	-	-
		53	-	-	-	0	-	-
		54	-	-	-	0		-
	125	55	-	-	-	0	-	-
	12.3	56	-	-	-	0	-	-
		57	- '	-	-	0	-	-
		58	-	-	-	0	-	-
		59	-	-	~	0	-	-
		60	-	-	-	0	-	-

## Addendum 2-34 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2)

-

B11-0836

.

					Handling obs	ervations		
Sex	Exp. group	Ani.mal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
		1	-	-	-	0	-	-
		2	-	-	-	0	-	-
		3	-	-	-	0	-	-
		4	-	-	-	0	-	~
	Vehicle	5	-	-	-	0	-	-
	control	6	-	-	-	0	-	-
		7	-	-	-	0	-	-
		8	-	-	-	0	-	-
		9	-	-	-	0		-
		10	-	-	•	. 0	*	-
		11	<b>ب</b>	-	-	0	-	-
		12	•	-	-	0	-	-
	5	13	-		-	0	-	-
		14	-	-	-	0	-	-
Mala		15	. •	-	-	0	-	-
Male	·····	16	-	-	~	0	-	-
		17	-	-	-	0	-	-
	25	18	-	-	-	0	-	•
		19	-	-	-	0	-	-
		20	-	-	-	0	-	-
	•	21		•	-	0	-	
		22	-	-	-	0	-	-
	•	23	-	-	-	. 0	-	-
		24	-	-	-	0	-	-
	107	25	-	-	-	0	-	-
	125	26	-	-	-	0	-	· _
		27	-	-	-	. 0	-	-
		28	-	-	-	0	-	-
		29	-	-	-	0	-	-
		30	-	-	• -	0	_	-

## Addendum 2-35 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 3)

					Handling obs	ervations		
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
		31	-	-	-	0	-	-
		32	-	-	-	0	-	-
		33	-	-	-	0	-	-
		34	-	-	-	0	-	-
	Vehicle	35	-	-	· _	0	-	-
	control	36	-	-	· -	0	-	-
		37	-	-	-	0	-	-
		38	-	-	-	0	-	-
	<u> </u>	-	0	-	-			
		40	-	-	-	0	-	-
		41	-	-		0	*	-
		42	-	-	-	0	-	-
	5	43	-	-	-	0	-	-
		44	-	-	-	0	-	-
Remain		45	-	-	-	0	-	-
remaie		46	-	-	-	0	-	-
		47	-	-	-	0	-	-
	25	48	-	-	-	0	-	-
		49	-	-	-	0	-	-
		50	-	-	-	0	-	-
		51	~	*	_	0	w.	
		52	-	-	-	0	•	-
		53	-	-	-	0	-	
		54	-	-	-	0	-	-
	176	55	-	-	~	0	-	-
	120	56	-	-	-	0	+	-
		57	-	-	-	0	-	-
		58	-	-	-	0	-	-
		59	-	-	-	0	-	-
		60	-	-		0	-	-

#### Addendum 2-36 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 3)

B11-0836

	•				Handling obs	ervations		
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
	(mg/kg/day)					size		
		1	-	*	-	0	· •	-
		2	-	-	-	0	Salivation     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -  -	-
		3	-	-	-	0	-	-
		4	-	-	-	0	~	-
	Vehicle	5	-	-	<b>-</b>	0	-	-
	control	6	-	-	-	0	-	-
		7		-	-	0	-	-
		8	-	-	-	0	-	-
		9	-	-	-	0	-	-
		10	-	-		0		-
		11	-	-	-	0	-	-
		12	-	-	~	0	-	-
	5	13	-	-	-	0	-	-
		14	-	-	-	0	-	-
Male	-	15	-	-	-	. 0	-	-
11410		16	•	-	-	0	-	-
		17	-	-	-	0	-	-
	25	18	-	-	-	0	-	-
		19	-	-	-	0	-	-
		20	-	-	-	0	-	-
		21	-	-	-	0	-	-
		22	-	-	-	0	-	-
	•	23	-	-	-	0	· -	-
		24	-	-	•	0	-	-
	175	25	-	-	-	0	-	-
	165	26	-	-	-	0	-	-
		27	-	-	-	0	-	-
		28	-	-	-	0	-	-
		29	-	-	-	0	-	-
		30	-	-	-	0	-	-

#### Addendum 2-37 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

BII-0836

		_			Handling obs	ervations		
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion
•	(mg/kg/day)					size	,	
		31	-	-		0	-	-
		32	-	-	-	0	•	-
		33 -	-	-	-	0	-	
		34	-	-	-	0	-	-
	Vehicle	35	-	-	-	0	-	-
	control	36	-	-	~	0	-	-
		37	-	-	-	0	-	-
		38	-	-	-	0	-	-
		39	-	-	~	0	-	-
		40	-	-	-	0	-	• -
		41	-	-	-	0	-	*
		42	-	-	-	0	-	-
	5	43	-	-	-	0	-	-
		<b>4</b> 4	-	-	-	0	-	-
Formala		45	-	-	-	. 0	• -	-
remaie	-	46	-	<del>, , , , , , , , , , , , , , , , , , , </del>		0	-	
		47 ^{a)}			*******			
	25	48	-	-	-	0	-	-
		49	-	-	-	0	-	-
		50	-	-	-	0	-	-
		51	÷		-	0	· -	~
		52	-	-	-	0	-	-
		53	-	-	-	0	-	-
		54	-	-	-	0	-	-
	176	55	-	-	-	0	-	
	123	56	-	-	-	0	-	÷
		57	-	-	-	0	-	-
		58	-	*	-	0	-	~
		5 <b>9</b>	-	-	-	0	-	-
		60	-	-	-	0	-	_

#### Addendum 2-38 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

B11-0836

a) Dead animal.

.

.

- 123 -

		_	Handling observations						
Sex	Exp.group	Animal No.	Cyanosis	Lacri mation	Exophthalmos	Pupillary	Salivation	Secretion	
	(mg/kg/day)					size			
		6	-	-	-	0			
		7	-	•	-	0	-	-	
	Vehicle	8	-	-	-	0	-	-	
	0011101	9	-	-	-	0	-	-	
24-14		10	-	-	-	0	-	-	
Male		26	- ·	-	<b>-</b>	0	**	-	
		27	-	-	-	0	-	-	
	125	28	-	-	· <b>-</b>	0	-	-	
		29	-	. •	-	0	-	-	
		30	-	-	-	0	-	-	

#### Addendum 2-39 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery w

		_		Handling observations						
Sex	Exp. group	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary	Salivation	Secretion		
	(mg/kg/day)					size				
		36	-	-	-	0	-	-		
		37	-	-	-	0	-	-		
	Vehicle	38	-	-	-	0	-	-		
	control	39	-	-	-	0 0	-	-		
		40	-	-	-	0	-	-		
emale	•	56	-	**	-	0		-		
	-	57	-	-	-	0	-	-		
	125	58	-	-	-	0	-	-		
		59	-	-	-	0	-	-		
		60	-	-	-	0	-	-		

#### Addendum 2-40 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery we

.

.

•					Handling obs	ervations		
Sex	Exp.group (mg/kg/day)	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary size	Salivation	Secretion
"i		6				0	-	-
		7	-	-	-	0	-	-
	Vehicle	8	-	-	•	0	-	-
	control	9.	-	-	-	0	-	-
Mala		10	-	-	*	0	-	-
IVIAIC	· · ·	26	-	-	-	0	-	-
		27	-	-	-	0	-	-
	125	28	-	-	-	0	-	-
		29	-	-	-	0	-	-
		30	-	-	-	0	-	-

# Addendum 2-41 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 2)

			Handling observations								
Sex	Exp. group (mg/kg/day)	Animal No.	Cyanosis	Lacrimation	Exophthalmos	Pupillary size	Salivation	Secretion			
		36	-	-		0	-				
		37	+	-	-	0	-	-			
	Vehicle	38	-	-	-	0	-	-			
	cona or	39	<b>-</b> ·	-	-	0	-	-			
E		40	-	-	-	0	-	-			
remale		56	-	•	-	0		-			
		57	-	-	-	0	-	-			
	125	58	-	-		0	-	• =			
		59	-	-	-	0	•	-			
		60	-	-	-	0	-	-			

# Addendum 2-42 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week

.

		_		Ob	servations in ar	ena	
Sex	Exp.group	AnimalNo.	Posture	Motor	Respiration	Lid	Ga
	(mg/kg/day)			activity		closure	
		1	0	0	0	-	-
		2	0	0	0	-	-
		3	0	0	0	-	-
		4	0	0	0	-	-
	Vehicl <del>e</del>	5	0	. 0	0	-	-
	control	6	0	0	0	-	-
		7	0	0	0	-	-
		8	0	0	0	-	
		9	0	0	0	-	-
		10	0	0	0	-	
		11	0	0	0	-	
		12	0	0	0	-	
	5	13	0	0	0	-	
		14	0	0	0	-	
Mala		15	0	0	0	-	
iviale		16	0	0	0	-	
		17	0	0	0	-	
	25	18	0	0	0	-	
		19	0	0	0	-	
		20	0	0	0	-	
		21	0	0	0		
		22	0	0	0	-	
		23	0	0	0	-	
		24	0	+1	0	-	
	125	25	0	0	0	-	
	123	26	0	+1	0	-	
		27	0	0	0	-	
		28	0	0	0	-	
		29	0	0	0	-	
		30	0	0	0	-	

B11-0836

# Addendum 2-43 Twenty-eight-day repeated-dose oral toxicity study in rats

		_		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respi ration	Ĺid	Gai
	(mg/kg/day)			activity		closure	
		31	0	0	0	-	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	35	0	0	0-	-	-
	control	36	0	0	0	-	-
		37	0	0	0	-	-
		38	0	0	0	-	-
		39	0	0	0	-	-
		40	0	0	0	-	· -
	<u></u>	41	0	0	0	+	~
		42	0	0	0	-	-
	5	43	Ó	0	0	•	-
		44	0	0	0	-	-
		45	0	+1	0	-	-
remaie		46	0	0	0	-	
		47	0	0	0	-	-
	25	48	0	+1	0	-	-
		49	0	0	0	· _	-
		50	0	0	0	-	-
	19	51	0	0	Q		-
		52	0	0	0	-	
		53	0	0	0	-	-
		54	0	+1	0	-	
		55	0	0	0	-	
	125	56	0	0	0	-	
		57	0	0	0	-	
		58	0	0	0	-	
		59	0	0	0	-	
		60	0	0	0	-	

Addendum 2-44 Twenty-eight-day repeated-dose oral toxicity study in rats

••

		_		Ob	servations in are	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Gai
	(mg/kg/day)			activity	_	closure	
		1	0	0	0	<b></b>	
		2	0	0	0	-	-
		3	0	0	0	-	-
		4	0	0	0	-	-
	Vehicle	5	0	0	0	-	-
	control	6	0	0	0	-	-
		7	0	0	0	-	-
		8	0	0	0	-	-
	-	9	0	0	. 0	-	-
		10	0	0	0	-	-
		11	0	Q	0	*	~
		12	0 -	0	0	-	-
	5	13	0	0	0	-	~
		14	0	0	0	-	-
Mole		15	0	0	0	-	
Maic		16	0	0	0	-	•
		17	0	+1	0	<b>-</b>	-
	25	18	0	0	0	-	-
		19	0	0	0	-	-
		20	0	0	0	-	•
		21	0	0	0	**	
		22	0	0	0	-	-
		23	0	0	0	-	-
		24	0	0	0	-	-
	12.5	25	0	0	0	-	-
	143	26	0	0	0.	-	•
		27	0	0	0	-	
		28	0	0	0	-	-
		29	0	0	0	-	-
		30	0	Ð	0	-	

Addendum 2-45 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)

		_		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respirati on	Lid	Gai
	(mg/kg/day)			activity		closure	
	•••••••••••••••••••••••••••••••••••••••	31	0	0	0	<b>-</b> '	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	.35	0	0	0	-	-
	control	36	0	0	0	-	-
		37	0	0	0	-	-
		38	0	+1	0	-	-
		39	0	+1	0	-	-
		40	0	0	0	-	-
	<b></b>	41	0	0	0	-	<del>.</del>
		42	0	0	0	-	-
	5	43	0	0	0	-	-
		44	0	0	0	•	-
Formale		45	0	+1	0	-	
remarc		46	0	0	0	-	
		47	0	0	0	-	-
	25	48	0	· 0	0	-	-
		49	0	0	0	-	-
		50	0	0	0	-	-
		51	0	0	0	-	-
		52	0	0	0	-	-
		53	0	0	0	-	-
		54	0	0	0	-	-
	125	55	0	0	0	-	-
	123	56	0	0	0	-	-
		57	0	0	0	-	
		58	0	0	Ö	-	•
		59	0	0	0	-	-
		60	0	0	0	-	

Addendum 2-46 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)

-

.

24.

B11-0836

• -

		-	·	05	servations in an	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Ga
	(mg/kg/day)			activity		closure	
		1	0	0	0	-	-
		2	0	0	0	-	-
		3	0	0	0	-	-
		4	0	0	0	-	-
	Vehicle	5	0	0	0	` <b>_</b>	-
	control	6	0	0	0	-	
		7	0	0	0	-	
		8	0	0	Ó	<b>.</b>	
		9	0	.0	0	-	
		10	0	0	0	-	
		11	0	0	0	-	
		12	0	0	0	-	
	5	13	0	0	0	-	
		14	0	0	0	-	
Mala		15	0	0	0	-	
Male		16	0	0	0	-	
		17	0	0	0	-	
	25	18	0	0	0	-	
		19	0	0	0.	-	
		20	0	+1	0	-	
		21	0	0	0	-	
		22	0	0	0	-	
		23	0	0	0	-	
		24	0	0	0	-	
	125	25	0	0	0	-	
	145	26	0	0	0	-	
		27	0	0	0	-	
		28	. 0	0	0	-	
		29	0	+1	0	-	
		30	0	0	0	-	

Addendum 2-47 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2)

		_		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Gai
	(mg/kg/day)			activity		closure	
		31	0	0	0	•	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	35	0	0	0	-	-
	control	36	0	0	0	-	-
		37	0	0	0	-	-
		38	0	+1	0	-	-
		39	0	0	0	-	-
		40	0	0	0	•	-
		41	0	0	0	-	-
		42	0	0	0	-	-
	5	43	0	0	0	-	-
		44	0	0	0	-	-
Female		45	0	0	0	-	
renizie		46	0	0	0	**	-
		47	0	0	0	-	-
	25	48	0	0	0	-	-
		49	0	0,	0	-	-
·		50	0	0	0	-	-
		51	0	0	0	-	-
		52	0	0	0	-	-
		53	0	0	0	-	-
		54	0	0	0	-	•
	125	55	0	0	0	-	-
	165	56	0	0	0	-	-
		57	0	0	0	•	-
		58	0	0	0	•	-
		59	0	0	0	-	-
		60	0	0	0	-	_

B11-0836

#### Addendum 2-48 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2

		-		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Ga
	(mg/kg/day)		101 E 1	activity		closure	
		1	0	+1	0	-	-
		2	0	0	Ő	-	-
		3	0	0	0	-	-
		4	0	0	0	-	~
	Vehicle	5	0	0	0	-	-
	control	6	0	0	0	-	-
		7	0	0	0	-	-
		8	0	0	0	-	· -
		9	0	0	0	-	-
		10	0	0	0	-	-
		11	0	0	0	197	~
		12	0	0	0	-	-
	5	13	0	0	0	-	-
		14	0	0	0	-	-
NG-1-		15	· 0	0	0	-	•
Male		16	0	0	0	-	-
		17	0	-1	0	-	-
	25	18	0	0	. 0	•	
		19	0	0	0	-	
		20	0	0	0		
	<u></u>	21	0	0	0	•	
		22	0	0	0	-	
		23	0	0	0	-	
		24	0	0	0	-	
	175	25	0.	0	0	-	
	125	26	0	0	0	-	
		27	0	0	0	-	
		28	0	0	0	~	
		29	0	0	0	-	
		30	0	0	0	-	,

#### Addendum 2-49 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 3)

		_		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lidi	Gai
	(mg/kg/day)			activity		closure	
		31	0	0	0	•	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	35	0	0	0	-	-
	control	36	0	0	0	-	-
		37	0	0	0	-	-
		38	0	0	0		-
		39	0	0	0	-	-
		40	0	0	0	-	-
		41	0	0	0	-	
		42	0	+1	0	-	-
	5	43	0.	0	0	-	-
		44	0	0	0	-	-
E		45	0	0	0	-	-
remale	40 <u></u>	46	0	0	0		-
		47	0	0	0	-	-
	25	48	0	0	0	-	-
		49	0	0	0	-	-
		50	0	0	0	-	-
		51	0	0	0	-	•
		52	0	0	0	-	
		53	0	0	0	-	
		54	0	0	0	-	
	10.6	55	0	0	0	-	
	120	56	0	0	0	-	
		57	0	0	0 ·	-	
		58	0	0	0	-	
		59	0	0	0	-	
		60	0	0	0	-	

Addendum 2-50 Twenty-eight-day repeated-dose oral toxicity study in rats

a.,

B11-0836

*

		-		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Gai
	(mg/kg/day)			activity		closure	
		1	0	0	0	-	
		2	0	0	0	-	-
		3	0	0	0	-	-
		4	0	0	0	-	-
	Vehicle	5	0	0	0	-	-
	control	6	0	0	0	-	-
		7	0	0	0	-	-
		8	0	0	0	-	-
		9	0	0	0	~	-
		10	0	0	0	-	-
		11	0	· 0	0	-	-
		12	0	0	0	-	
	5	13	0	0	0	-	
		14	0	0	0	-	-
Mala		15	0	0	0	-	-
iviale		16	0	0	0	-	•
		17	0	0	0	-	-
	25	18	0	0	0	-	•
		19	0	0	0	-	•
		20	0	0	0	-	
		21	0	0	0	-	
		22	0	0	0	-	
		23	0	0	0	-	
		24	0	0	0	-	
	125	25	0	0	0	-	
	125	26	0	0	0	-	
		27	0	0	0	-	
		28	0	0	0	-	
		29	0	0	0	-	
		30	0	0	0	-	

B11-0836

Addendum 2-51 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

2. .

		-		Ob	servations in arc	ma	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Gai
	(mg/kg/day)			activity		closure	
		31	0	0	0	~	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	35	0	0	0	-	-
	control	36	0	0	0	•	-
		37	0	0	0	-	-
		38	0	0	0	-	-
		39	0	0	0	-	-
		40	0	0	0	-	-
	<u></u>	41	0	0	0	-	-
		42	0	0	0	~	-
	5	43	0	0	· · 0	-	-
		44	0	0	0	-	-
P		45	0	0	0	-	-
remale	······································	46	0	0	0	*	
		47 ⁸⁾	_				_
	25	48	0	0	0	-	-
		49	0	0	0	-	-
		50	0	0	0	-	
		51	0	0	0	-	
		52	0	0	0	-	•
		53	0	0	0	<b>-</b> .	
		54	0	0	0	-	
	195	55	0	0	0	-	
	125	56	0	0	0	-	
		57	0	0	0	-	
		58	0	0	0	-	
		59	0	0	0	-	
		60	0	0	0	-	,

B11-0836

Addendum 2-52 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

a) Dead animal.

•

		_		Ob	servations in an	епа	
Sex	Exp.group	Animal No.	Posture	Motor	Respiration	Lid	Gai
	(mg/kg/day)			activity		closure	
		6	0	0	0	-	~
		7	0	0	0	-	-
	Vehicle	8	0	0	0	-	-
	will of	9	0	0	0	-	-
Mala		10	0	0	0	-	-
wiale		26	0	0	Q		-
		27	0	0	0	-	
	125	28	0	0	0	-	-
		29	0	0	0	-	
		30	0	0	0	-	-

BI1-0836

## Addendum 2-53 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 1)

.....
				•			
		_		Ob	servations in ar	ena	
Sex	Exp. group	Animal No.	Posture	Motor	Respiration	Lid	Gait
	(mg/kg/day)			activity		closure	
		36	0	0	0	•	
		37	0	0	0	-	-
	Vehicle	38	0	0	0	-	-
	Control	39	0	0	0	-	-
Ramata		40	0	0	0	-	-
remate		56	0	0	0	-	
		57	0	0	0	-	-
	- 125 -	58	0	0	0	-	-
		59	0	0	0	-	-
		60	0	0	0	-	_

### Addendum 2-54 Twenty-cight-day repeated-dose or al toxicity study in rats Detailed clinical observations of individual animals (Recovery week 1)

B11-0836

			Observations in arena					
Sex	Exp.group (mg/kg/day)	Animal No.	Posture	Motor activity	Respiration	Lid closure	Gai	
		6	0	+1	0	-	-	
		7	0	+]	0	-	-	
	Vehicle	8	0	0	0	-	-	
	Control	9	0	0	0	-	-	
Mala		10	0	0	0	-	-	
Male	<u></u>	26	0	0	0	-	-	
		27	0	0	0	-	-	
	125	28	0	0	0	-	-	
		29	0	+1	0	-	-	
		30	0	0	0	-	-	

Addendum 2-55 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week

		_	Observations in arena						
Sex	Exp. group (mg/kg/day)	Animal No.	Posture	Motor activity	Respiration	Lid closure	Gai		
		36	0	0	0	*	-		
		37	0	0	0	-	-		
	Vehicle	38	0	0	0	-	-		
	control	39	0	0	0	-	-		
Panala		40	0	0	0	-	-		
remale	₩ <u>₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	56	0	0	0	+	-		
		57	0	0	0	-	-		
	125	58	0	0	0	-	-		
		59	0	+1	0	-	-		
		60	0	0	0		-		

B11-0836

Addendum 2-56 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Recovery week 2)

.

				Obser	vations in aren	a	
Sex	Exp.group	Animal No.	Tremor/twitch/	Defiecation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior
		t	0	0	0	-	-
		2	0	0	4	-	-
		3	0	1	0	-	
		4	0	0	1	-	-
	Vehicle	5	0	1	3	-	-
	control	6	0	0	0	-	-
		7	0	0	1	-	-
		8	0	0	2	-	-
		9	0	0	0	-	-
		10	0	Q	0	-	-
	<u></u>	11	0	0	0	•	-
		12	0	0	0	-	-
	5	13	0	0	0	-	-
		14	0	0	0	•	-
Mala		15	0	0	0	-	-
IVIAIC	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	16	0	0	1		-
		17	0	0	3	-	-
	25	18	0	0	0	-	-
		19	0	. 0	9	-	-
		20	0	0	1	-	-
	•	21	0	0	2	-	-
		22	0	0	0	-	-
		23	0	3	0	-	-
		24	0	2	3	-	-
	10.5	25	0	1	1	-	-
	120	26	0	0	1	-	-
		27	0	0	4	-	-
		28	0	0	0	-	-
		29	0	0	0	<b>-</b> ,	-
		30	0	0	0	-	-

#### Addendum 2-57 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Predosing)

**...** 

۰ ،

			Man	Obser	vations in aren	a	
Sex	Exp. group	Animal No.	Tremor/twitch/	Deficcation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior
		31 .	0	0	1	-	-
		. 32	0	0	2	-	-
		33	0	0	2	-	•
		34	0	Ó	1	-	-
	Vehicle	35	0	0	0	-	-
	control	36	0	0	2	-	-
		37	0	0	0	-	-
		38	0	0	0	-	-
		39	0	0	0	-	-
•		40	0	0	0	-	-
	·	41	0	0	6		
		42	0	0	0	-	-
	5	43	0	- 0	0	-	
		44	0	0	1	-	-
× 1		45	0	0	0	-	-
remale	90000000000000000000000000000000000000	46	0	0	7	#	-
		47	0	0	1	-	-
	25	48	. 0	0	1	-	-
		49	0	0	0	-	-
		50	0	0	0	-	-
		51	0	0	0	-	-
		52	0	0	1	-	-
		53	0	0	0	-	-
		54	0	0	0	-	-
		55	0	0	0	-	
	125	56	0	0	0	-	-
		57	0	0	0	-	-
		58	0	0	1	-	-
		59	0	0	0	-	-
		60	0	0	I	-	-

#### Addendum 2-58 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (Predosing)

. .

...

	-		Observations in arena					
Sex	Exp. group	Animal No.	Tremor/twitch/	Deflecation	Urination	Stereotypic	Abnorma	
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior	
		1	0	0	0	-	-	
		2	0	0	0	-	-	
		· 3	0	0	0	-	-	
		4	0	0	1	-	-	
	Vehicle	5	0	3	2	-	-	
	control	6	0	0	1	-	-	
		7	0	1	0	-	-	
		8	0	0	0	-	-	
		9	0	0	0	-	-	
		10	0	0	0	-	-	
		11	0	0	0	-	-	
		12	0	0	0	-	-	
	5	13	0	0	0	-	-	
		14	0	0	0	-		
Male		15	0	0	0	-	-	
141410		16	0	1	0	-	-	
		17	0	0	0	-	-	
	25	18	0	0	2	-	-	
		19	0	0	1	-	-	
		20	0	2 .	4	-	-	
		21	0	0	1	-	-	
		22	0	2	0	-	-	
		23	0	2	0	-	-	
		24	0	0	0	-	-	
	125	25	0	5	1	-	-	
	123	26	0	2	0	-	-	
		27	0	0	0 .	-	-	
		28	0	0	0	~	-	
		29	0	0	0	-	-	
		30	0	0	0	-	-	

### Addendum 2-59 Twenty-eight-day repeated-dose oral toxicity study in rats

				Obser	vations in aren	a	
Sex	Exp. group	Animal No.	Tremor/twitch/	Deficcation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	beha vior	behavior
		31	0	0	0	-	-
		32	0	0	2	-	-
		33	0	0	0		-
		34	0	0	1	-	-
	Vehicle	35	0	0	0	•	-
	control	36	0	0	1	-	-
		37	0	0	0	-	-
		38	0	0	0	-	-
		39	0	0	0	-	-
		40	0	0	1	-	-
	44499-000	41	0	0	2	-	
		42	0	0	0	-	-
	5	43	0	0	0	-	-
		44	0	0	1	-	-
<b>B</b> I.		45	0	0	0	-	-
remaie	<b>Auflington</b> , <b>1</b>	46	0	0	0		-
		47	0	0	0	-	-
	25	48	0	0	0	-	-
		49	0	0	0	-	-
		50	0	0	2	-	-
		51	0	0	4	-	
		52	0	0	0	-	-
		53	0	0	0	-	
		54	0	0	1	-	-
		55	0	0	0	-	-
	125	56	0	0	0	-	-
		57	0	0	0	-	-
		58	0	0	3	-	• _
		59	0	0	1	-	-
		60	0	0	T.	-	_

Addendum 2-60 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 1)

.

#### B11-0836

...

•

.

.

				Obser	vations in aren	a	
Sex	Exp. group	Animal No.	Tremor/twitch/	Defecation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	beha vior	behavior
		1	0	0	0	-	-
		2	0	1	1	-	-
		3	0	0	2	-	-
		4	0	2	1	-	-
	Vehicle	.5	0	3	1	-	-
	control	6	. 0	0	0	-	-
		7	0	1	0	-	-
	•	8	0	0	2	· _	-
		9	0	. 0	0	-	-
		10	0	0	0	-	-
		11	0	0	0		<b>M</b>
		12	0	0	0	-	-
	.5	13	0	2	0	-	-
		14	0	0	0	-	-
14-1-		15	0	0	0	~	-
Male		16	0	2	2	•	
		17	0	0	0	<b>-</b> .	-
	25	18	0	0	1	~	-
		19	0	0	4	-	-
		<b>20</b> ⁻	0	1	1	-	-
	*	21	0	4	1	-	-
		22	0	0	0	-	-
		23	0	I	5	-	-
		24	0	0	1	-	-
	105	25	0	0	1	-	-
	125	26	0	2	3	-	-
		27	0	0	0	-	-
		28	0	0	0	-	-
		29	0	0	0	-	-
		30	0	0	0	-	

Addendum 2-61 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2)

B11-0836

•---

				Obser	vations in aren	a	
Sex	Exp. group	Animal No.	Tremor/twitch/	Defecation	Urination	Stereotypic	Abnormal
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior
		31	0	0	0	-	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	35	0	0	0	-	-
	control	36	0	0	Ő	-	-
		37	0	0	0	-	-
		38	0	0	0	-	
		39	0	0	0	-	-
		40	0	0	3	-	••
		41	0	0	0	-	-
		42	0.	0	<b>0</b> ·	-	-
	5	43	0	0	0	-	-
		44	0	0	0	-	-
Esmala		45	0	0	0	**	<del>-</del> .
remale		46	0	0	0		
		47	0	0	0		-
	25	48	0	0	0	-	-
		49	0	0	0	-	-
		50	0	0	0	-	~
	<u></u>	51	0	0	0	national and a second secon	*
		52	0	0	0	-	-
		53	0	0	0	-	-
		54	0	0	2	-	-
	10.5	55	0	0	0	-	-
	125	56	0	0	0	-	-
		57	0	0	0	-	-
		58	0	0	0	-	-
		59	0	0	0	-	-
		60	0	0	3	•	-

#### Addendum 2-62 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 2)

·· •·

				Obser	vations in aren	a	
Sex	Exp. group	Animal No.	Tremor/twitch/	Defecation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	beha vior	behavior
		1	0	0	1	-	-
		2	0	0	5	-	-
		3	0	0	0	-	-
		4	0	0	0	-	-
	Vehicle	5	0	4	2	• ·	-
	control	6	0	0	0	-	-
		7	0	0	0	-	-
		8	0	1	. 2	-	-
		9	0	0	3	-	-
		10	0	0	0		*
		11	0	0	0	+	
		12	0	0	0	-	-
	5	13	0	1	0	-	-
		14	0	0	0	-	-
Mala		15	0	0	0	•	-
Male		16	0	1	1	-	•
		17	0	0	1	-	-
	25	18	0	1	2	-	-
		19	0	3	9	-	-
		20	0	2	3	**	-
		21	0	0	0	-	
		22	0	0	0	-	-
		23	0	0	3	-	-
		24	0	0	0	-	-
	105	25	0	0	0	-	-
	123	26	0	0	0	-	~
		27	0	0	0	-	-
		28	0	0	0	-	میں
	. `	29	0	0	0	-	-
		30	0	0	2	-	-

Addendum 2-63 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 3)

-

4.5

				Obser	vations in aren	8	
Sex	Exp. group	Animal No.	Tremor/twitch/	Deficcation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior
		31	0	0	0	-	-
		32	0	0	0	-	-
		33	0	0	0	-	-
		34	0	0	0	-	-
	Vehicle	.35	0	0	0	-	-
	control	36	0	0	0	-	-
		37	0	0	0	-	-
		38	0	0	0	-	-
		39	0	0	0	-	-
		40	0	0	0	-	•
		41	0	0	2	-	-
		42	0	0	0	-	-
	.5	43	0	0	0	-	-
		44	0	0	0	-	-
Francia		45	0	0	0	. 🟎	
remate		46	0	0	0	-	-
		47	0	0	0	-	-
	25	48	0	0	0	-	-
		49	0	0	0	-	-
		50	0	0	1	-	-
	· · · · · · · · · · · · · · · · · · ·	51	0	0	0	-	
		52	0	0	0	-	-
		- 53	0	0	0	-	-
	•	54	0	0	0.	-	-
	105	55	0	0	0	-	-
	125	56	0	0	0	-	-
		57	0.	0	0	-	-
		58	0	0	0	•	-
		59	0	0	0	-	
		60	ß	0	0	-	-

### Addendum 2-64 Twenty-eight-day repeated-dose oral toxicity study in rats

1 1 1 2

÷

				Obser	vations in aren	8	
Sex	Exp. group	Animal No.	Tremor/twitch/	Defecation	Urination	Stereotypic	Abnorma
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior
		1	0	0	0	· ••	-
		2	0	1	4	-	-
		3	0	2	0	-	-
		4	0	0	0	-	-
	Vehicle	5	0	0	0	-	-
	control	6	0	0	1 .	-	-
		7.	0	0	0	-	-
		8	0	0	2	-	-
		9	0	0	0	-	-
		10	0	0	0	-	-
		11	0	Ò	0		-
		12	0	0	0	-	-
	5	13	0	0	0	-	-
		14	0	0	0	-	-
Mala		15	0	0	0	-	-
Male	•	16	0	2	0	-	-
		17	0	0	0	-	-
	25	18	0	3	3	-	-
		19	0	1	1	-	
		20	0	2	2	•	
		21	0	1	1		
		22	0	0	0	-	-
• •		23	0	0	1	•	-
		24	0	0	0	~	-
	196	25	0	0	2	~	-
	125	26	0	0	0	-	
		27	0	0	0	-	-
		28	0	0	0	-	-
		29	0	0	0	-	-
		30	0	2	0	-	-

Addendum 2-65 Twenty-eight-day repeated-dose oral toxicity study in rats Detailed clinical observations of individual animals (week 4)

			Observations in arena								
Sex	Exp. group	Animal No.	Tremor/twitch/	Defecation	Urination	Stereotypic	Abnorma				
	(mg/kg/day)		convulsion	(count/min)	(count/min)	behavior	behavior				
		31	0	0	0	-	-				
		32	0	0	0	-	-				
		33	0	0	3	-	-				
		34	0	0	0	-	-				
	Vehicle	35	0	0	0	-	-				
	control	36	0	0	0	•	-				
		37	0	0	0	-	-				
		38	0	0	1	-	-				
		39	0	0	0	-	-				
		40	0	0	0	-	-				
		41	0	0	0	*	**				
		42	0	· 0	0	-	-				
	5	43	0	0	0	-	-				
		44	0	0	0	-	-				
Forab		45	0	0	. 0	**	**				
r emare	R	46	0	0	0	**	-				
		47 ^{a)}									
	25	48	0	0	0	-	-				
		49	0	0	0	-	-				
		- 50	0	0	0	-	-				
		51	0	0	1	**	-				
		52	0	0	0	-	-				
		53	0	0	0	-	-				
		54	0	0	0	-	-				
	105	55	0	0	0	-					
	120	56	0	0	0	•	-				
		57	0	0	0	**	-				
		58	0	0	1	-	-				
		59	0	0	0	-	-				
		60	0	0	1	-	-				

Addendum 2-66 Twenty-eight-day repeated-dose oral toxicity study in rats

B11-0836

**...***

a) Dead animal.

.

			Observations in arena								
Sex	Exp.group (mg/kg/day)	Animal No.	Tremor/twitch/ convulsion	Defiecation (count/min)	Urination (count/min)	Stereo typic behavior	Abnormal behavior				
		6	0	0	0		-				
		7	0	1	0	-	-				
	Vehicle	8	0	0	1	-	-				
	CONTROL	9	0	0	0	-	-				
> 6 - 1 -		10	0	0	0	-	-				
Maie		26	0	0	0	**					
		27	0	0	0	-	<del>~</del> .				
	125	28	0	0	0	-	~				
		29	0	0	0		•••				
		30	0	0	0	-	-				

B11-0836

...

Detailed Clinical observations of 1 horvidual animals (Recovery week 1)									
Sex	Exp. group (mg/kg/day)	Animal No.	Tremor/twitch/	Defecation (count/min)	Urination (count/mi.n)	a Stereotypic behavior	Abnorma		
		36	0	0	0	-			
	<b>**</b> -*-*-*-	37	0	0	0	-	-		
	Vehicle	38	0	0	0	÷.	-		
	contagi	39	0	0	1	-	-		
Townla		40	0	0	0	-	-		
remale		56	0	0	0	+	-		
		57	0	0	0	-	-		
	125	58	· 0	0	5	-	-		
		59	0	0	0	-	-		
		60	0	0	0	-	-		

Addendum 2-68 Twenty-eight-day repeated-dose oral toxicity study in rats

Addendum 2-69	Twenty-eight-	Twenty-eight-day repeated-dose oral toxicity study in rats										
	Detailed clinical observations of individual animals (Recovery week 2)											
				Observations in arena								
Sex	Exp.group	Animal No.	Tremor/twitch/	Defecation	Urination	Stereotypic	Abnormal					
	(mg/kg/day)		convulsion	(count/min)	(count/mi_n)	behavior	behavior					
		6	0	0	1	-	-					
		7	0	0	0	-						
	control	8	0	0	0	-	-					
		9	0	0	0	-						
<b>)</b> (-)-		10	0	0	0	-	-					
Male		26	0	0	0	-						
		27	0	0	0	-	-					
	. 125	28	0	0	0	-	-					
		29	0	0	0	-	-					
		30	0	0	0	-						

# Addendum 2-69 Twenty-eight-day repeated-dose oral toxicity study in rats

- 154 -

			Observations in arena								
Sex	Exp. group (mg/kg/day)	Animal No.	Tremor/twitch/ convulsion	Defecation (count/min)	Urination (count/min)	Stereotypic behavior	Abnorma behavior				
		36	0	0	0	-	-				
		37		0	0	-	-				
	Vehicle	38	0	0	0	-	-				
	control	39	0	0	0	-	-				
Paula		40	0	0	0	*	-				
remaie	······································	56	0	0	0		-				
		57	0	0	0		-				
	125	58	0	0	0	-	-				
		59	0	0	0	-	-				
		60	0	0	0	-	-				

# Addendum 2-70 Twenty-eight-day repeated-dose oral toxicity study in rats

				Sense	orimotor function		
Sex	Exp. group	Animal No.	Approach contact/	Pinna	Pain response	Pupillary	Air righting
	(mg/kg/day)	•	touch response	response	(tail pinch)	reflex	reflex
		1	0	0	0	+	÷
		2	0	0	0	÷	+
		3	0	0	0	+	+
		4	0	0	0	+	+
	Vehiale control	5	0	0	0	+	+
	Venicie Collubi	6	0	0	0	+	+
		7	0	0	0	+	÷
		8	0	0	0	+	÷
		9	0	0	0	÷	÷
		10	0	0	0	+	+
	····	11	0	0	0	+	+
		12	0	0	0	+	+
	5	13	0	0	0	+	+
		14	0	0	0	+	+
Mala		15	0	0	0	+	+
wiaic		16	0	0	0	+	+
		17	0	0	0	+	+
	25	18	0	0	0	+	÷
		19	0	0	0	+	÷
		20	0	0	0	÷	÷
		21	0	0	0	. +	+
		22	0	0	0	+	+
		23	0	0	0	+	+
		24	0	0	0	+	÷
	175	25	0	0	0	+	+
	122	26	0	0	0	÷	÷
		27	0	0	0	+	÷
		28	0	0	0	÷	÷
		29	0	0	0	+	÷
		30	0	0	0	÷	+

### Addendum 3-1 Twenty-eight-day repeated-dose oral toxicity study in rats Reflex of individual animals (week 4)

			Sensorimotor function									
Sex	Exp. group	Animal No.	Approach contact/	Pinna	Pain response	Pupillary	Air rightin					
	(mg/kg/day)		touch response	response	(tail pinch)	reflex	reflex					
		31	0	0	0	+	+					
		32	0	0	0	+	+					
		33	0	0	0	+	+					
		34	0	0	0	+	+					
	Vahiala control	35	0	0	0	÷	+					
	vencie control	36	0	0	0	÷	÷					
		37	0	0	0	+	+					
		38	0	0	0	+	+					
		39	0	0	0	+	+					
		40	0	0	0	+	+					
·		41	0	0	0	+	4					
		42	0	0	0	÷	+					
	5	43	0	0	0	+ ,	+					
		44	0	0	0	+	+					
E ann a la		45	0	0	0	+	+					
remaie	<u></u>	46	0	0	0	+	+					
		47 ^{a)}										
	25	48	0	0	0	+	+					
		49	0	0	0	+	+					
		50	0	0	0	+	+					
		51	0	0	0	+	+					
		52	0	0	0	÷	+					
		53	0	0	0	÷	+					
		54	0	0	0	+	+					
	10.5	55	0	0	0	+	+					
	125	56	0	0	0	+	+					
		57	0	0	0	+	+					
		58	0	0	0	+	+					
		59	0	0	0	+	+					
		60	0	0	0	+	+					

### Addendum 3-2 Twenty-eight-day repeated-dose oral toxicity study in rats Reflex of individual animals (week 4)

B11-0836

a) Dead animal.

	Grip strength	of individual a	animals (w	cek 4)				
Sex	Exp.group	Animal No.		Forelimb (g)	)	]	Hindlimb (g	;)
	(mg/kg/day)		Trial 1	Trial 2	Mean	Trial 1	Trial 2	Mea
		1	644	863	754	415	570	493
		2	1179	<del>99</del> 0	1085	299	338	319
		3	1161	957	1059	444	385	415
		4	944	588	766	410	601	506
	Vehicle	5	919	805	862	536	629	583
	control	6	665	649	657	529	637	583
		7	738	1054	896	494	415	455
		8	516	985	751	658	625	642
		9	643	617	630	585	687	636
		10	794	969	882	428	492	460
		11	889	785	837	491	359	425
		12	1033	761	897	323	448	38(
	5	13	635	891	763	492	400	44
		14	748	757	753	353	858	60
Mala		15	847	863	855	636	631	634
IVIARC		16	771	901	836	390	328	35
		17	881	889	885	504	837	67
	25	18	1036	1089	1063	372	449	41
		19	1173	1084	1129	527	398	46
		20	980	1060	1020	440	494	46
		21	613	1127	870	468	430	44
		22	1069	939	1004	322	431	37
		23	906	839	873	598	602	60
		24	94 <b>8</b>	809	879	546	511	52
	125	25	1060	740	900	266	399	33
	621	26	829	1116	973	274	347	31
		27	1065	515	790	316	297	30
		28	1164	1012	1088	720	766	74
		29	951	940	946	385	313	34
	•	30	804	825	815	544	451	49

## Addendum 4-1 Twenty-eight-day repeated-dose oral toxicity study in rats

1

B11-0836

.

٠

Sex	Exp.group	Animal No.		Forelimb (g	)	]	Hindlimb (g	;)
	(mg/kg/day)		Trial 1	Trial 2	Mean	Trial 1	Trial 2	Mea
		31	1045	817	931	318	636	477
		32	415	661	538	354	443	399
		33	7 <b>9</b> 5	946	871	310	536	423
		34	515	346	431	584	671	628
	Vehicle	35	506	406	456	394	350	372
	control	36	889	984	937	452	302	377
		37	858	924	891	360	273	317
		38	418	415	417	619	634	627
		39	623	618	621	486	503	495
		40	924	662	793	645	674	660
		41	909	810	860	379	556	468
		42	1021	676	<b>8</b> 49	368	413	<b>39</b> 1
	5	43	738	545	642	2 <b>9</b> 3	281	283
		44	1149	826	988	220	386	303
Formala		45	627	791	709	554	552	553
r cillaic		46	514	609	562	348	311	33(
		47 ^{a)}			<u>`</u>	_		-
	25	48	555	848	702	417	565	49
		49	1058	671	865	583	567	57:
		50	728	751	740	265	207	23
		51	785	780	783	390	339	36
		52	839	1022	931	392	483	43
		53	494	605	550	532	647	59
		54	566	1054	810	364	304	33-
	125	55	504	538	521	224	339	28
	163	56	830	1005	918	549	485	51
		57	728	869	7 <b>99</b>	364	357	36
		58	855	834	845	307	<b>498</b>	40
		59	425	666	546	502	606	55
		60	670	627	649	311	591	45

·**.** .

B11-0836

# Addendum 4-2 Twenty-eight-day repeated-dose oral toxicity study in rats

a) Dead animal

.

.

### Addendum 5-1 :ated-dose oral toxicity study in rats

ľ

Sex	Exp. group	Animal No.			Mo	tor activity	(count)		
	(mg/kg/day)		0-10	10-20	20-30	30-40	40-50	50-60	0-60 (min
		1	5391	5127	3180	4159	3876	1994	23727
		2	3014	3430	2104	2513	892	2460	14413
		3	3185	1605	189	37	3	2	5021
		4	22	2043	2831	2283	2260	72	9 5 11
	Vehicle	5	797	2245	4523	1830	130	29	9554
	control	6	279 <b>8</b>	1596	332	959	851	462	6998
		7	2010	3180	2543	1995	1722	1158	12608
		8	3867	4942	3478	3288	2468	4540	22583
		9	3379	3704	1786	2590	981	70	12510
		10	2412	1953	1981	1448	924	1665	10383
		11	5206	4676	2662	2481	1950	2066	19041
		12	885	6029	3458	2597	447	1200	14616
	5	13	790	2578	2024	2433	1551	89	9465
		14	3181	3614	1495	1106	865	807	11068
Mala		15	2984	3497	1013	114	24	26	7658
IVIAIC	•	16	4169	1724	1107	1534	282	592	9408
		17	4504	3846	1 <b>9</b> 77	2114	2097	1950	16488
	25	18	2957	1545	661	260	436	254	6113
		19	4497	2974	1994	582	2067	199	12313
		20	3890	3110	2407	90	15	119	9631
		21	1138	2174	890	396	45	286	4929
		22	2358	3939	3133	3901	2180	1974	17485
		23	2082	3661	1863	209	3054	800	11669
		24	3460	2635	2828	1995	1243	5	12166
	125	25	1974	3545	3228	1459	370	695	11271
	123	26	3108	2350	1388	1494	282	887	9509
		27	5523	4318	2516	1483	4	1101	14945
		28	6287	4055	3406	3 5 8 1	2641	2372	22342
		29	4478	33 <del>9</del> 0	2527	2688	2652	2053	17788
	. '	30	4763	2690	3272	1446	741	325	13237

#### Addendum 5-2 sated-dose oral toxicity study in rats

Motor activity of individual animals (week 4)

Sex	Exp. group	Animal No.			Mo	tor activity	(count)		•
	(mg/kg/day)		0-10	10-20	20-30	30-40	40-50	50-60	0-60 (min)
		31	3655	4833	2754	1482	3667	2365	18756
		32	3105	1738	1353	0	2	22	6220
		33	3949	3384	1840	2327	1683	234	13417
		34	5934	5338	5033	3352	3650	323	23630
	Vehicle	35	5337	4212	3584	2627	3153	1968	20881
	control	36	379 <del>9</del>	2056	1298	26	10	1.	7190
		37	4675	3709	3325	1160	2	10	12881
		38	5307	3783	4789	3669	3757	276	21581
		39	4852	4837	4956	3285	3004	318	21252
		40	4751	3770	4197	3683	3975	2418	22794
		41	4674	4527	2689	294	1789	188	14161
		42	6663	4300	3331	3375	583	3017	21269
	5	43	4586	277 <b>9</b>	3725	3228	2328	695	17341
		44	8394	5508	6724	3660	2038	273	26 <b>59</b> 7
Female		45	6578	5664	4104	3456	2011	3891	25704
remale	•••	46	5562	4569	4133	2919	4074	3494	24751
		47 ^{a)}			-		_		
	25	48	5654	3730	3471	1646	926	30	15457
	•	49	7935	7511	6501	4231	4294	174	30646
		50	3885	3786	1542	266	2533	1977	13989
	••••••••••••••••••••••••••••••••••••••	51	4864	3477	3225	6	4	7	11583
		52	4354	4276	4649	1675	0	0	14954
		53	4343	4165	4902	2977	4484	2365	23236
		54	4252	3769	3340	3299	3289	35	17984
	10.5	. 55	4281	4864	4092	3992	2555	2129	21913
	125	56	4215	3959	4056	648	2	32	12912
		57	7338	6320	5377	607 <del>9</del>	3567	5306	33987
		58	5396	4873	4698	4245	2629	1825	23666
		59	6039	3751	3523	4059	2698	652	20722
		60	3660	1703	170	1083	201	1334	8460

a) Dead animal

in rats	
repeated-dose oral toxicity study i individual animals(g)	
Twenty-eight-day Body weights of	
Addendum 6-1	

Sex	Exp. group						Administratio	n period			
	(mg/kg/day)	Animal No.	-2	*-1	ø	8	12	17	21	26	28 (days)
		1	118.1	135.6	147.1	191.1	221.0	256.9	280.3	309.7	317.5
		2	125.5	142.8	159.7	206.9	244.8	273.2	301.7	328.6	334.7
		m	125.0	142.5	152.8	188.7	218.5	250.9	270.2	301.8	313.4
		4	124.6	138.5	156.5	196.8	231.8	269.1	294.8	321.1	328.1
	Vehicle	- CO	133.3	150.1	169.2	224.8	265.6	312.8	339.8	387.2	398.9
	control	9	123.8	139.8	154.4	196.5	226.7	255.3	282.3	3.15.7	321.1
		7	122.0	135.0	149.8	181.2	210.0	244.6	277.4	310.0	321.0
		80	124.7	146.5	761.0	196.0	227.8	255.4	276.0	299.7	307.0
		6	125.6	13g.4	<b>47.6</b>	175.3	202.1	228.2	243.5	267.2	275.2
		10	130.0	149.1	161.2	206.5	237.8	278.6	303.5	339.4	348.7
		11	123.7	140.0	57.8	197.1	230.4	264.8	290.7	327.9	335.4
		12	126.0	140.7	152.2	192.5	220.8	263.5	289.7	318.1	$3^{2}9.2$
	5	13	133.1	156.5	167.6	213.7	245.9	285.5	313.4	346.3	354.1
		14	124.6	146.9	163.3	192.7	224.1	258.4	285.1	322.5	334.7
Male		15	122.0	$13^{0}_{0}.4$	149.8	186.3	220.1	$\overline{2}54.2$	274.6	294.5	2 ⁹ 6.9
		16	150.1	130.9	152.3	195.5	225.4	254.0	275.1	308.8	315.7
		17	132.5	15, 1	168.3	216.3	253.1	288.6	315.0	348.5	361.2
	25	8	126.1	145.2	154.2	197. 9	225.9	256.9	287.2	319.7	324.1
		<u>1</u> 9	124.7	137.2	150.8	187.2	213.3	242.0	265.4	290.4	296.2
		<u>5</u> 0	123.9	148	153.9	191.4	215.7	236.6	248.7	274.6	278,8
		x.0.	128.3	143.7	160.1	207.3	239.6	281.7	306.6	344.1	353.7
		21	125.4	144.6	154.8	196.3	225.6	258.5	27.1	301.3	306.5
		1 C 60	121.7	141.4	458.1	801. S	228.0	256.8	277.5	303.7	308.1
		ৰণ ব c	128.0	146.0	158.5	405 A	241.0	277.1	305.5	336.4	342.6
	125	<u>د</u> ا ه د	123.2	142.6	156.0	187.6	234.1	264.3	288.3	306.9	312.9
		20 20	125.1	141.5	153.9	-83.4	209.9	241.7	265.5	284.7	293.7
		2	122.7	139.4	149.7	180.0	204.2	236.6	261.4	290.1	300.7
		- 2	120.8	135.7	147.1	175.3	199.3	228.1	249.8	281.1	290.8
		28	126.2	141.7	155.2	189.9	223.6	248.3	279.2	310.8	316.8
		30	130.7	146.8	161.5	198.8	232.2	268.2	285.8	310.7	315.3

B11-0836

Addendum 6-2 Twenty-eight-day repeated-dose oral toxicity study in rats Body weights of individual animals(g)

Sex	Exp.group				-		Administratio	n period			
	(ng/kg/day)	Antmal No.	-2	1	ę	80	12	17	21	26	28 (days)
		31	116.5	130.3	136.6	161.6	173.2	181.8	184.9	217.9	226.5
		32	107.1	122.4	132.1	156.6	170.0	180.5	193.4	207.5	209.1
		33	114.8	127.2	140.3	156.6	165.4	171.6	183.6	$19_{6}$ 1	198,7
		34	113.4	125.9	132.6	152.1	167.8	183. 5	197.0	207.4	205.9
	Vehicle	35	111.0	124.6	136.3	166.6	1g3.2	194.7	205.0	220.1	222.0
	control	36	111.6	124.4	137.0	159.9	1,2.4	188.	198.9	21, 2	208.4
		37	114.3	127,7	142.0	169.2	1.6.8	193. 9	213.6	234.7	234.8
		38	112.6	127.1	135,3	155.7	165.9	185,5	198.2	212 0	219.1
		39	118.4	126.1	140.9	162.1	173.6	182,6	193.6	198.2	208.4
		40	107.3	122.8	133.6	166.3	183.5	199.3	217.3	231.1	238.5
		41	112.9	126.1	134.6	144.1	153.7	173.6	184.8	196.7	200.9
		42	109.7	128.6	137.8	155.1	175.0	181.2	191.2	210.2	202.6
	Ω,	43	114.6	127.9	145.3	17,1	188.2	208.2	224.4	239.1	233.2
		44	117.5	133,8	142.8	174.8	200.5	222.1	236.1	246.5	258.6
Fenale		45	111.2	123.1	127.9	144.6	159.1	178.6	188.9	206.0	204.8
		46.	118.0	132.0	139.8	168.7	185.5	200.5	211.9	219.1	223, 3
		47	116.0	131.6	141.9	170.3	188.1	205.7	218.8	- a)	I
	25	48	109.6	26.0	130.2	146.8	162.5	177.2	194.0	205.1	209.0
		49	110.3	<b>±</b> 25.6	136.8	165.4	172.5	196.8	213.1	235.9	241.6
		50	112.3	124.4	137.2	165.8	181,5	195.2	207.7	224.6	231.5
		51	108.9	120.5	131.4	147.7	156.3	173.2	181.7	194.1	196.4
		52	110.6	123.7	125.4	151.8	164.5	176.2	185.8	200.1	204.4
		53	118.9	134.4	147.0	171.7	189.1	207.6	219.7	222.9	23,.7
		54	115.9	130.1	144.0	177.5	201.1	219.8	,30.4	242.4	$25^{-6}$
	125	55	113.3	126.8	134.8	161.0	179.6	194.9	207.3	222 2	222.1
		56	107.5	117.8	128.4	14, 0	155.5	167.8	176.6	181 2	192.0
		57	110.7	126.0	128.9	$14^{-2}$ .2	158.8	169.4	181.9	193.5	$19\overline{7}.9$
		58	113.9	126.4	137.2	168.7	191.5	204.8	215.7	239:6	239.3
		59	117.9	132.0	150.7	182.1	204.8	218.5	231.9	243-3	256,0
		60	115.0	125.9	135.5	152.2	165.4	175.2	186,9	211.8	217.2

a) Dead animal.

Addendum (	6-3 Twenty-e Body wei.	ight-day repe ghts of indiv	sated-dose oral toxicit ridual animals(g)	ry study in rats		B11-0836
Sex	Exp. group			Recovery	/ period	
	(mg/kg/day)	Animal No.	1	ß	10	14 (days)
		9	320,1	339.7	361.7	376.7
		7	319.9	337.0	365.4	381.3
	Vehicle	æ	308.1	322,4	342.4	356.7
	control	D	273.2	292.0	312.0	316.0
Male		10	352.0	368,9	397.8	447.7
	×	26	292.5	305.7	328.9	349.3
		27	301.3	3,3.2	336.7	359.2
	125	28	291.5	3_6.4	328.6	35
		29	314.7	331.0	354.1	3.2.4
		30	317.1	322.4	339.5	30.2
		36	212.8	222.7	226.8	260.4
		37	238.0	238.3	248.9	2,06,2
	Vehicle	38	218.8	235.6	235.9	24.3.0
	control	39	211.5	218.5	219.0	220.5
Fenale		40	239.9	251.7	259,5	262.9
		56	192.3	193.8	190.2	192.8
		57	202.2	205.2	211.0	210.2
	125	58	242.9	243.1	242.1	. 248.1
		59	255.5	260.1	260.5	269.9
		60	209.9	218.3	236.8	247.0
		-				

٠

B11-0836

•

- 164 -

.

rats	
in	
study	
oxicity	rat/dav)
ч Т	(E/1
ora	mals
dose	ani
eated-	vidnal
rep	indi
t-day	s of
ighi	ake
y-e	int
Twent	Food
1-1	
g	
Addendu	

	LOUU LUC	ATHIT TO CAVE	Toulu autual	2/8/1.ar/ nal /				
Sex	Exp. group				Admini	stration period		
	(mg/kg/day)	Animal No.	1	ę	8	15	22	28 (days)
		1	16.3	16.4	19.6	18.6	18.4	17.4
		~3	17.8	18.1	20.8	21.0	19.0	16.7
		თ	17.2	16.0	17.9	16.3	16.0	17.4
		4	16.0	17.0	19.2	18.7	18.3	16.5
	Vehicle	10	18.1	20.5	23.7	23.9	23.5	24.2
	control	9	17.0	17.4	0 0 0	7.9	17.3	16.9
		7	15.4	16.3	19.3	17.2	18.1	18.4
		8	18.2	18.5	18.2	7.7	17.2	17.5
		6	15.4	14.8	11.1		15.0	14.9
		10	18.2	18.7	20.2	<u>40.6</u>	21.3	20.3
		11	16.4	16.9	6.01	17.9	17.8	17.8
		12	17.5	15.8	1.1	18.7	19.8	18.6
	2 L	13	19.3	19.0	4.0	19.5	10.1	18.7
		14	16.3	16.9	ເນ - ເບ - ເບ	19.8	$1_0^{\circ}.2$	10.1
Male		15	$1^{0}_{6}.6$	17.1	<u>1</u> ,7	19.0	1°.5	<u>≐5</u> .4
		16	1.5	16.4	19.1	17.7	1, 4	16.8
		$1\tilde{7}$	15.3	18.6	21.5	19.4	16.0	18.7
	25	18	17.2	16.3	18,8	16.7	19.3	16.9
		19	16.5	17.2	18,3	17.7	$1^{7.5}$	16.5
		20	15.1	16.6	18.4	16.4	17.5	15.0
		21	1.8	18.8	-0.9	20.9	20.2	20.2
		22	16.8	17.2	49.4	18.6	8.2	16.7
		23	17.8	18.5	40.8 7	17.8	16.4	16.5
		24	17.2	17.9	<u></u> 22.0	22.0	;1.0	18.4
	125	25	17.0	18.4	<u>8</u> 1.2	21.3	6.9.	18.9
		26	18.5	17.4	17.5	16.8	17.2	16.7
		27	16.3	16.7	17.6	18.3	18.8	19.0
		28	15.6	15.4	18.3	16.0	16.0	17.6
		29	16.5	16.4	18.3	18.7	18,9	18.4
		30	17.8	19.0	20.6	20.1	19.9	18.2

study in rats	•
toxicity	g/rat/day
oral	mals(
repeated-dose	individual ani
Twenty-eight-day	Food intakes of j
idendum 7-2	

						and the second descent of the second s		
Sex	Lxp. group				Admin	istration period	7	
	(mg/kg/day)	Animal No.	-4	ę	80	15.	22	28 (days)
		31	14.6	13.3	14.8	11.8	10.2	13.6
		32	13.5	13.2	14.2	12.2	11.9	11.8
		33	14.3	15.2	14.0	11.8	12.0	12.9
		46	13.8	12 6	14.4	12.8	11.5	10.9
	Vehicle	50	15.2	15 0	16.6	14.4	12.7	13.2
	control	9 0	14.0	15:4	15.4	13.4	11.6	10.7
		5	14.9	15.3	15.9	13.9	11.3	19.7
		80	14.3	13.3	14.2	11.9	12.6	1.0
		o n	14.4	14.6	15.3	11.0	10.5	10.9
		30 2	14.1	14.0	16.9	15.4	14.2	14.7
		奉1	14.1	13.8	12.4	11.7	9.11	$1^{+}_{0.2}$
		42	14.2	14.4	13.3	11.5	10.0	10.3
	ŝ	43	14.9	16.8	17.8	15.0	12.8	14.5
		44	17.7	17.3	18.4	16.6	16.2	10.3
Female		45	14.1	11.0	12.8	2.2	12.0	1-1-8
		46	15.6	14.5	16.5	6.6	12.6	11.6
		47	15.7	14 8	16.0	19.7	12.1	- a)
	25	48	14.4	12 2	14.5	1.4	12.2	12.8
		49	14.8	13:6	16.3	$1^{4}_{4}.2$	13.9	15,2
		50	14.6	15 2	16,3	1 ⁴ .6	12.8	13.1
		51	13.2	14,0	13.2	12.0	10.8	10.8
		52	13.6	11.3	13.9	11.9	11.8	12.5
		53	15.2	15,0	15.4	-1.9 -1	13.8	13.7
		54	15.8	17.6	19.4	+3.1	15.4	15.1
	125	5 D	14.5	14 3	16.8	16.4	13.7	14.0
		56	13.2	13.0	13.7	15.9	11,1	11.8
		57	14.1	12.6	13.4	11.5	10.4	11.2
		58	13.3	13-3	16.4	15.1	13.4	13.0
		59	15.2	16.4	17.4	15.2	13.2	14.8
		60	14.5	14.4	14.4	12.0	12.2	13.7

.

a) Dead animal.

Addendum	7-3 IMENTY-	eignt-day repei takes of indivi	ated-dose oral idual animals(	toxicity study in rats g/rat/day)	9680-118
Sex	Exp.group	:		Recovery period	
	(mg/kg/day)	Animal No.	4	80	14 (days)
		9	19.4	22.0	22.1
		7	18.8	21.9	21.9
	Vehicle	8	19.0	21.6	23.1
	control	თ	17.5	19.9	22.1
Male		10	22.9	25.4	27.0
		26	20.3	21.2	22.3
		27	20.5	21.1	23.2
	125	28	17.2	20.9	22.6
		29	19.3	20.9	22.9
		30	17.8	20.9	22.1
		36	14.0	15.0	15.4
		37	11.9	15.8	17.6
	Vehicle	38	16.5	18.8	18.3
	control	39	13.4	15.1	15.4
Fenale		40	17.1	19.3	19,6
		56	12.5	13.4	14.0
		57	14.3	15.9	13.9
	125	58	13.3	·1, 0	14.7
		59	15.8	19.4	17.9
		60	16.8	16.3	17.1

- 167 -

8
22
×
T.
-
8

. •

**~** 

Twenty-eight-day repeated-dose oral toxicity study in rats Hematological data of individual animals Addendum 8-1

		r					Ĩ																									
APTT	(sec)	28.4	24.8	23.1	23.5	26.3		30.2	30.6	32.2	31.3	32.6	22.0	24.5	29.9	25.6	30.7	26.3	25.3	27.5	26.9	27.0	25.4	26.0	24.6	27.0	28.0		28.5	32.8	25.I	29.0
P T	(sec)	14.1	16.1	13.6	14.5	13.4		17.6	19.0	15.0	15.9	25.6	12.9	13.5	15.4	14.0	16.7	14.8	14.3	14.3	16.9	17.2	16.1	14.7	15.,	14.9	15.2		22.9	24.3	13.3	14.7
Reticulo	(%)	2.5	2.0	2.8	1.7	3.0		1.7	1.4	1.6	2.0	2.0	2.7	2.4	2.5	2.5	1,7	3.6	3.0	67 1	2.4	2.3	2.4	1.7	2.3	2.6	2.1		1.8	010	20	2.0
Platelet	(X104 / µL)	104.5	98.6	93.4	110.6	89.2		109.9	92.5	108.4	96.7	111.2	91.4	104.8	104.9	106.5	91.1	95.3	102.3	97.2	88. <del>2</del>	91.0	110.0	86.7	91.7	90.5	108.6		112.5	106.7	99.4	81.3 116.9
MCHC	(Tp/S)	34.1	33.9	33.5	33.5	33.6		33.7	33.6	33,8	33.3	34.2	34.3	34,3	33.6	33.6	33.7	34.1	33.7	34.0	33.8	33.6	33.9	34.4	33.9	33.5	33.0		34.1	34.2	33.6	34.8 34.3
NCH	(bg)	19.9	19.7	19	19.2	20.7		18.9	18.8	19.2	18.7	19.3	19.8	20.7	19.2	19.8	19,8	20.7	19.9	19.5	20.0	20.0	19.4	20.2	15	20.2	19.1		18.2	18.9	19.3	20.0
NCV	(II)	58.3	58.1	58.2	57.3	61.5		56.2	58.1	56,6	56.1	56.5	57.8	60.4	57.2	59.0	58,9	60.7	59.1	57,4	59.1	59.7	57.2	58.8	57.7	60.3	58.1		53.4	ນ. ເ	57.5	51.4
Ηt	(%)	45.1	46.8	45.1	45.8	46.5		47.6	48.5	48.5	46.1	48.0	43.7	46.2	45.3	46.0	48.0	40.8	46.3	4, 3 6	48.6	47.6	43.6	45.2	44.	45.4	49.9		45.4	43.5	42.2	43.7 44 1
Hb	(g/dL)	15.4	1g.8	1 . 1	15.3	15.6		16.0	16.3	16.4	15.4	16.4	15.0	15.8	15.2	15.0	16.2	13.9	15.6	14.4	15.8	16.0	14.8	15.6	15.2	15.2	16.4		15.5	14.9	14.2	15.2
WBC	(x10 ² /µL)	110	116	141	.108	136		111	89	89	121	131	158	123	105	101	110	140	113	88	117	116	133	136	66	72	100		114	112		1-1-1 9-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
RBC	(x10 ⁴ /µL)	774	806	775	798	755		847	864	856	820	849	757	764	792	781	815	672	784	73,	790	798	762	770	775	753	859		850	788	7 3 3	7 6 2 8 5 8
	Animal No.	1	~3	ო	ቅ	S	Recovery	9	7	<b>00</b>	თ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Recovery	26	27		30
Exp. group	(ng/kg/day)					Vehicle	control								ъ,					25							125					
	Sex																Male															

- 168 -

	٥
	ō.
•	ð
- C	>
	۰.
-	-
- 11	-

r

	Rxp-group		RBC	MBC	ЧÞ	Ht	MCV	MCH	MCHC	Platelet	Reticulo	7 1	APTT	
Sex	(mg/kg/day)	Animal No.	$(x10^4 / \mu L)$	(x10 ² /µL)	(g/dL)	(%)	(LI)	(pg)	(TP/S)	(x10 ⁴ /µL)	(%)	(sec)	(sec)	
		31	752	74	14.7	43.3	57.5	19.5	33.9	102.8	2.3	13.0	20.4	l
		32	780	77	15.5	44.9	57.6	19.9	34.5	$1_2^{-8.2}$	1.6	13.1	$2^{2.0}$	
		93 9	784	81	15.4	45.4	58.0	19.7	33.9	68	2.0	13.6	21.1	
		34	826	88	15.9	45.5	55.2	19.2	34.9	14.9	1.0	14.0	43.9	
	Vehicle	35	745	78	15.3	44.6	59.9	20.5	34.2	110.4	1.9	12.7	24.8	1
	control	Recovery												1
		36	808	56	15.6	44.0	54.4	19.3	35.6	125.0	1.3	13.9	19.5	
		37	727	73	13.9	39.8	54.8	19.1	34.9	137.7	2.0	14.5	23.6	
		38	726	44	14.8	42.2	58.1	20.4	35.1	119.7	1.6	12.7	21.4	
		30	820	73	15.2	43.8	53.4	18.6	34.8	128.1	1.4	13.9	20.7	
		40	806	87	15.6	44.2	54.8	19.4	35.4	108.6	1.1	12.9	20.5	1
		41	727	103	14.8	43.3	59.6	20.4	34.3	96.5	1.6	14.2	20.5	
		42	755	81	15.2	44.6	59.0	20.1	34.0	107.8	1.4	13.3	26.7	
	2	43	766	105	15.4	45.8	59.7	20.1	33.6	92.7	1.3	12.3	22.3	
		44	750	67	14.8	44.1	58.9	19.7	33.6	104.6	1.8	12.8	24.5	
Female		45	802	86	15.8	46.8	58.4	19.7	33.7	112.9	1.8	12.2	24.0	
		46	745	73	14.7	43.0	57.7	19.7	34.1	104.4	1.2	14.1	24.0	
		47a)	ł	1	1	1	1	ł	1	I	1	I	1	
	25	48	804	82	15.2	45.0	55.9	19.0	33.9	115.3	1.8	13.9	24.3	
		49	791	148	15.7	46.8	59.2	19.8	33.5	104.6	2.4	12.7	25.0	
		50	771	131	15.1	45.0	58.4	19.6	33.5	100.2	2.1	12.8	22.5	1
		51	727	66	14.8	43.1	59.3	20.3	34.2	97.3	1.3	12.9	19.0	1
		52	772	61	15.4	45.3	58.6	19.9	34.0	108.6	1.6	12.9	24.1	
		53	770	9 <b>0</b>	14.8	43.7	<u>6.7</u>	19.2	33.9	113.		13.4	25.4	
		54	764	94	16.0	47.7	<b>6</b> 2.4	21.0	33.6	97.7	5. 80	13.0	24.5	
	125	55	780	120	15.6	45.8	58.7	20.0	34.1	109.4	1.7	12.0	23.3	1
		Recovery												
		56	769	83	14.7	41.9	54.5	19.1	35.1	123.1	1.4	13.9	22.6	
		57	839	63	15.3	43.9	52.3	18.2	34.8	132.8	1.2	13.5	24.3	
		58	789	92	15.0	43.1	54.7	19.0	34.8	120.6	1.2	14.2	24.5	
		59	787	92	14.1	40.7	51.1	17.7	34.6	132.2		13.5	20.0	
and the second		60	794	75	14.6	41.7	52.5	18.4	35.1	127.2	1.0	13.3	T8.3	1

a) Dead animal.

	rats	
	in	
	study	
•	toxici ty	[ma] s
	oral	l an
	-dose	ividua
	ated	ind
	repe	a of
	day	dat
	<u>1</u>	Cal
	13	£ 1.
	<u>8-</u> 6	010
	Twent	Hemat
	8-3	
	lendum	

Addendum 4	8-3 Twenty-e Hematolo	sight-day rep gical data o	eated-dose o f individual	ral toxicity animals	study in rats			81
	Exp.group			Differentis	ttion of leuko	cyte (%)		
Sex	(mg/kg/day)	Animal No.	Neutro	Eosino	Baso	Lymph	Mono	LUC
		1	14.0	0.4	0.1	82.5	2.4	0,6
		~1	17.4	0.7	0.2	77.7	3.2	0.8
		n	19.5	0.6	0.1	78.8	2.3	0.8
		4	11.2	0.7	0.1	85.4	1.7	1.0
	Vehicle	5	27.8	0.8	0.1	68.2	2.7	0.4
	control	Recovery						
		မ	12.0	0.7	2.0	83.0	1.5	0.9 0
		2	9.2	0.7	2.7	85.0	1.9	0.6
		œ	17.9	<u>د،</u>	0.9	76.9	50. 10	0.5
		o.,	22.3	0.3	1.3	73.4	8. -	0.8
		10	11.6	1.3	1.1	83.8	1.7	0.6
		11	10.3	0.4	0.1	86.7	2.0	0.5
		12	19.7	0.9	0.1	77.0	1.7	0.6
	ŝ	13	11.8	1.1	0.1	84.1	2.3	0.0
		14	16.8	0.7	0.1	79.7	2.2	0.5
Male		15	20.7	1.1	0.1	75.2	2.2	0.6
,		16	16.9	1.0	0.0	79.7	2.1	0.4
		17	4.1	0,8	0.1	81.6	2.8	0.0
	25	18	18.2		0.1	78.1	2.1	0.5
		10	23.8	0, 		69.7	4.2	
		3	f . 1		<u></u>	0.0		2 I 2 I
		12	15.9	0 0 0 1	1.0	80.9		0.7
		2 C 2 C	10.4			1 - 1 - 1 A - 4 - 4 A - 4 - 4	0.F	
		200	30		>	- C		- 14
	125	₽ 1 01	28.0	4 · 0	1.0	67.7	2.6	0.6
		Recovery			in the second state of the second state and the second state of the se			
		26	21.5	0.4	1.6	73.4	2.6	0.5
		27	29.3	0.6	0.6	66.1	2.8	0.6
		28	17.8	0.7	0.3	78.9	1.6	0.7
		50	18.5	0.7	0.9	77.7	1.7	0.4
		30	13.3	1.4	0.4	82.7	1.4	8.0 0

**B11-0836** 

. .

rats	
Ín	
study	
sral toxicity	animals
repeated-dose o	a of individual
Twenty-eight-day	Hematological dat
endum 8-4	
ਰੁੱ	

Addendum 8	1-4 Twenty-e Hematolo	ight-day rep gical data o	eated-dose ( f individua]	oral toxicity :   animals	itudy in rats			811
	Exp. group			Differentie	tion of leuko	cyte (%)		
Sex	(mg/kg/day)	Animal No.	Neutro	Rosino	Baso	Lymph	Mono	DUL
		31	7.7	0.4	0.1	89.9	1.3	0.7
		32	30.2	0.8	0.0	62.2	6.0	0.8
		33	20.0	1.0	0.1	76.7	1.8	0.4
		34	16.1	0.9	0.1	80.3	2.0	0.6
	Vehicle	35	8.3	0.4	0:1	89.7	0.8	0.6
	control	Recovery						
		36	8.7	1.2	0.4	86.7	2.4	0.0
		37	20.3	1.0	0.2	76.9	1.2	0.3
		38	20.6	1.8	0.4	73.6	3.0	0.5
		39	9.4	1.5	0.2	86.2	1.8	0.9
		40	22.4	0.8	0.2	73.6	2.1	1.0
		41	10.2	0.7	0.1	86.7	1.3	1.0
		42	24,4	1.0	0.1	71.1	2.2	1.1
	ຄ	43	13.3	0.7	0.0	82.4	2.8	0.8
		44	12.3	0.6	0.0	85.0	1.4	0.7
Female		45	8.7	1.0	0.1	88.3	1.0	1.0
	•	46	19.7	0.9	0.1	76.4	2.2	0.7
		47 a)	1	I	I	I	1	I
	25	48	20.0	0.6	0.1	77.7	0.9	0.7
		49	11.6	0.7	0.1	85.0	1.7	1.0
		50	11.3	1.6	0.1	83.7	2.6	0.7
		51	14.7	0.4	0.1	83.2	1.0	0.6
		52	12.8	6.0	0.1	83.6	1.9	0.7
		53	10.3	0.0	0.1	87.2	1.2	0.7
		54	18.3	1.2	0.1	78.2	1.5	0.6
	125	55	22.3	0.5	0.0	75.2	1.2	0 [.] 9
		Recovery						1
		56	16.1			78.6	5 7	0 0 0
		2.0	17.1	4.2	0.3	78.0	1.7	с. О
		200			4.0	53.53	2.0	
		6 C	13.8 24 8	-1 2	4 K	81.4 40 8		~ 9 . 0
				0 · 7		2.2	2 • •	

a) Dead animal.

811-0836

I

,

.

1

Exp. group         AST         ALT         ALT         CBS $7$ -Ore         T-Cho         TG         Glucose $7$ -Precia.         Albunit.	Addenaun	9-1 Tyenty-e Blood ch	ignt-day rep emical data	of individ	oral coxicit, ual animals	y study in re	ats							399n-119	
Soc         (ma/kt/dav)         Animal         Ro.         (Tu/L)         (Tu/L)<		Exp. group		AST	ALT	ALP	ChB	γ -GTP	T-Cho	ÐL	Glucose	T-Protein	Albumin	A/G ratio	
Mhle         Main         Main <th< td=""><td>Sex</td><td>(mg/kg/day)</td><td>Animal No.</td><td>(1/01)</td><td>(T/NI)</td><td>(1/h])</td><td>(1/11)</td><td>(1/nI)</td><td>(TP/Sm)</td><td>(ng/dL)</td><td>(mg/dL)</td><td>(g/dL)</td><td>('Ip/S)</td><td></td></th<>	Sex	(mg/kg/day)	Animal No.	(1/01)	(T/NI)	(1/h])	(1/11)	(1/nI)	(TP/Sm)	(ng/dL)	(mg/dL)	(g/dL)	('Ip/S)		
Weisele         2         57         15         543         61         0.5         57         16         176         5.5         5.3         0         1           7         7         8         57         13         18         0.5         57         144         5.3         0         1         2         5.6         3.0         1         2         3.0         1         1         0         5         1         44         5.3         0         1         4         5.6         1         44         5.8         1         0         0         5         1         44         5         1         44         5         1         44         5         1         44         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td></td><td></td><td>ч</td><td>67</td><td>23</td><td>413</td><td>49</td><td>0.2</td><td>96</td><td>106</td><td>146</td><td>5.4</td><td>2.9</td><td>1.16</td></t<>			ч	67	23	413	49	0.2	96	106	146	5.4	2.9	1.16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			01	57	2 1	439	61	0.5	57	00	176	5 9	0.0 0	1.15	
Value         4         63         12         54         70         0.5         52         14         5.8         22         9         0           Paincie         5         7         8         5         7         14         5         2         9         0         1         14         5         2         9         0         1         14         5         2         2         9         0         1         14         5         1         14         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<			m '	00	57	572	55	1.1	80	62	162	5.4	6.0	1.16	
Whicle         B         57         21         341         72         0.4         64         120         142         6.0         22         9           7         660         83         20         373         43         0.3         65         129         129         142         6.0         22         9         0           7         660         23         373         43         0.3         65         129         129         142         6.0         22         9         0         9         16         129         142         6.0         23         8         0.3         65         129         147         2.8         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28         28 <td></td> <td></td> <td>4</td> <td>80 103</td> <td>100</td> <td>549</td> <td>30</td> <td>0.5</td> <td>52</td> <td>74</td> <td>144</td> <td>5.8 2.8</td> <td>5.0</td> <td>1.00</td>			4	80 103	100	549	30	0.5	52	74	144	5.8 2.8	5.0	1.00	
Male         Control         Mecorety           7         69         25         373         43         0.3         65         129         5.7         2.9         0.1         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3 </td <td></td> <td>Vehicle</td> <td>5</td> <td>57</td> <td>21</td> <td>341</td> <td>72</td> <td>0.4</td> <td>64</td> <td>120</td> <td>142</td> <td>6.0</td> <td>2.9</td> <td>0.94</td>		Vehicle	5	57	21	341	72	0.4	64	120	142	6.0	2.9	0.94	
Rise         20         373         43         0.3         65         27         43         0.3         65         28         360         0         373         43         0.3         85         64         11         15         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56		control	Recovery	1								1			
7       69       64       25       350       41       0.7       131       132       56       132         9       64       25       370       41       0.7       1       121       56       132       56       132       56       132       132       56       132       132       56       132       135       56       132       135       56       132       135       56       132       135       56       132       135       56       132       135       56       132       135       56       132       135       56       132       135       56       136       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56 </td <td></td> <td></td> <td>ю I</td> <td>63</td> <td>20</td> <td>373</td> <td>43</td> <td>0.3</td> <td>65</td> <td>65</td> <td>129</td> <td>5.7</td> <td>5 7 8</td> <td>0.97</td>			ю I	63	20	373	43	0.3	65	65	129	5.7	5 7 8	0.97	
Male         25         273         42         0.2         64         41         135         5.8         2.8         0.0           10         71         24         283         53         0.8         72         64         41         135         5.8         2.8         0.0           10         71         24         283         53         0.8         72         64         841         135         5.8         2.8         0.0         8         72         64         841         135         5.8         2.8         0.0         8         72         64         841         135         5.8         0.8         72         64         841         135         5.8         0.8         72         64         841         135         5.8         0.8         72         5.8         0.9         72         5.8         0.9         72         5.8         2.8         0.9         73         5.8         2.8         0.9         73         5.8         2.8         0.9         73         5.8         2.8         0.9         73         5.8         70         147         5.8         2.8         0.9         74         76         147         5.8 <td></td> <td></td> <td>Ē</td> <td>89</td> <td>25</td> <td>350</td> <td>41</td> <td>0.7</td> <td>-1 (3)</td> <td>20</td> <td>121</td> <td>5.8</td> <td>5.9 7</td> <td>1.00</td>			Ē	89	25	350	41	0.7	-1 (3)	20	121	5.8	5.9 7	1.00	
10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10<			æ (	64	25	273	42	0.2	4	41	135	5.8	2.8	0.93	
Male         10         71         24         283         53         0.8         72         129         185         5.9         2.8           5         12         58         18         64         0.4         77         129         185         5.9         2.8         0.4         78         10         11         0.1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10			თ	69	23	328	48	0.8	90	84	146	5.8	2.8	0.93	
11         64         0.4         11         64         0.4         1           5         11         64         0.4         64         0.4         64         0.4         64         0.4         1         6         6         4         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6 <th col<="" td=""><td></td><td></td><td>10</td><td>71</td><td>24</td><td>283</td><td>53</td><td>0.8</td><td>72</td><td>129</td><td>185</td><td>5,9</td><td>2,8</td><td>0.90</td></th>	<td></td> <td></td> <td>10</td> <td>71</td> <td>24</td> <td>283</td> <td>53</td> <td>0.8</td> <td>72</td> <td>129</td> <td>185</td> <td>5,9</td> <td>2,8</td> <td>0.90</td>			10	71	24	283	53	0.8	72	129	185	5,9	2,8	0.90
12 $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $13$ $15$ $50$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ $16$ <t< td=""><td></td><td></td><td>11</td><td>65</td><td>20</td><td>549</td><td>64</td><td>0.4</td><td>76</td><td>91</td><td>152</td><td>5.4</td><td>2.8</td><td>1.08</td></t<>			11	65	20	549	64	0.4	76	91	152	5.4	2.8	1.08	
Male     5     13     71     24     476     38     0.5     67     100     1.4     5.8     1.4       1     1     65     22     444     31     0.5     57     147     5.8     1.4       1     65     22     420     41     0.5     57     147     5.8     1.0       1     65     22     420     41     0.5     58     1.6     7.2     1.6       1     65     27     483     48     0.6     45     0.6     48     1.6       25     19     87     23     48     0.6     45     70     1.6     2.8     2.8       20     58     15     45     0.6     45     70     1.6     5.8     2.6       21     71     31     64     45     0.6     45     70     1.6     2.6     2.6       22     64     45     70     1.6     70     1.65     5.8     2.6     2.6     2.8       21     71     31     67     45     0.6     47     109     1.67     5.8     2.6     2.6       22     24     95     13     16     173			12	58	18	438	34	0.7	57	6 ₆	153	5.7	3.0	1.11	
Male         14         59         22         644         38         0.5         59         78         161         5.2         2.8         1           15         16         71         31         500         41         0.5         59         78         161         5.2         2.8         1           16         71         31         500         45         0.6         45         47         147         5.2         3.0         0           25         18         69         22         551         45         0.6         45         46         70         153         5.4         2.8         0           20         58         15         572         30         0.6         47         161         161         3.1         1           21         71         31         67         162         561         70         167         568         70           22         54         57         30         0.6         47         109         161         5.3         5.4         2.8         5.5         2.9         11         5         2.6         5.5         2.9         5.6         2.9         5.6		ŝ	13	71	24	476	38	0.5	67	100	1,0	5.6	2.8	1.00	
Male         15         60         22         420         41         0.3         42         57         147         5.8         3.0         1           25         18         71         31         500         45         0.6         46         75         8         3.0         1           25         18         65         27         46         0.6         46         76         167         12.6         3.0         1           26         17         31         572         561         45         0.6         46         70         156         5.1         2.6         3.1           20         58         15         572         30         0.5         45         70         156         5.1         2.6         3.1         1         2.6         3.1         1         2.6         3.1         1         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.7         2.6         2.7         2.6         2.7         2.6         2.7         2.6         2.6			14	59	22	644	38	0.5	59	72	161	5.2	2.8	1.17	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Male		15	60	22	420	41	0.3	42	57	147	5.8	3.0	1.07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			16	71	31	500	45	0.6	46	48	153	5.4	2.6	0.93	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			17	65	27	483	48	0.4	54	76	156	5.7	2.8	0.97	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	18	69	C3	551	46	0.5	45	70	152		2.6	-,04	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6 C	- 0 0	ю. 1,	012	42	ດ, 0	80 i	78	161	ູ່	~1 c 	1.29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<u>60</u>	00	10	700	30	0.0	40	22	987	0.0	3.6	1.14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			21	71		672	45	0.6	47	109	159	ອີ	2.8 8.9	0.93	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			N 0	201	24	621	4 0	6.0 0	40	98,	173	ດ ເມີ	0) I N (	1.12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50	Ŧ.	22	196	00	0.6	4.(	ATT	7 9 7	۰° م	1.2	1. 48	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			24	94	39	703	46	0.7	43	45	197	5.5	5°.0	$1.^{-2}$	
Recovery 28 72 26 386 29 0.6 62 95 135 5.3 2.6 0 27 73 24 331 25 62 95 135 5.3 2.6 0 28 64 21 379 26 0.2 39 35 127 5.8 2.9 1 23 29 55 133 29 0.5 62 95 123 5.8 2.8 0 30 70 22 399 36 0.9 42 65 8 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 36 0.9 42 63 127 5.8 2.8 0 0.9 42 63 127 5.8 2.8 0 0.9 42 63 127 5.8 2.8 0 0.9 42 63 127 5.8 2.8 0 0.9 42 63 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 2.8 0 0.9 127 5.8 5.8 0 0.9 127 5.8 5.8 0 0.9 127 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8		125	25	95	41	881	36	0.4	37	76	169	6.3	3.3	1.10	
26     72     26     386     29     0.6     62     95     135     5.3     2.6     0       27     73     24     331     25     0.2     39     35     127     5.6     2.9     1       28     64     21     379     9     0.2     39     35     127     5.6     2.9     1       29     55     23     290     94     0.7     65     95     121     5.8     2.6     0       30     70     22     399     36     0.9     42     63     127     5.8     2.8     0			Recovery	:( 8	4	, L	4			1		4	(		
28     64     23     29     9.5     53     29     9.5     53     53     54     5.8     2.6     9       29     55     23     290     94     0.7     62     95     123     5.8     2.6     0       30     70     22     399     36     0.9     42     63     127     5.8     2.8     0					97	990	5	9-0- 0-0-	N (	ດ ແ ວາ ເ	2 N 1	0 r 7	90 97	0.80	
29     55     23     290     34     0.7     65     32     123     5.8     2.8     0       30     70     22     399     36     0.9     42     63     127     5.8     2.8     0			- 90	- u	4 4 4	100 040	0 0 7		טית שית	040	121	0 0 0 1		1.0 10	
<u>30 70 22 399 36 0.9 42 63 127 5.8 2.8 0</u>			000	1 IC	1 03	000	0 T		3 U 3 U	1 C	121		0.00	0.93	
			30.0	70	22	0000	90 90	6.0	24 22	63	127	5.8	.0	0.93	

-0836 211_

B11-0836

Addendum 9	-2 Twenty-e. Blood cht	ight-day rept emical data c	sated-dose of individu	oral toxicity al animals	· study in ra	ts							B11-0836
	Exp. group		AST	ALT	ALP	ChE	ን - ርጤ	T-Cho	TG	Glucose	T-Protein	Albumin	A/G ratio
Sex	(mg/kg/day)	Animal No.	(1/11)	(T/DI)	(1/01)	(1/11)	(1/n1)	(ag/dL)	(mg/dľ)	(mg/dL)	(TP/S)	(g/dL)	
		31	57	15	422	242	0.7	54	12	129	5.7	3.1	1.19
		32	50	77	304	212	2.0	59	39	123	5.8	а. 1 1	1.15
			80 c	16	348	120	8.0	83	17	148	5.7	3.1	1.19
	- la tán	0.4 4 a	0 0	20	900	209	, 0,0	20	17		ດ. ເດີ	( () ()	
	Aeulcie	00	20	67	24.0	135	0.0	90	18	001	0.0	2.9	1.12
	CONTROL	Recovery	02	00	<b>66</b> 4	000	с ,	C	× c	4 4 4	с ц	c	•
		50	0 I ~ ¥	4 t-	-1 - 7 - 7 -	202		0 u 0 u	4 0	141	ۍ د ۵		1, 1, 1, 1,
		20	50			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8. 			5 C C C C C C C C C C C C C C C C C C C		9 C	4
		50	0,3	24	1001	000	0,0	- 0	24		90	200	- 44 
		54 04	24	2.10	126	412	0	13	22.0	148	0.0	0 e 7 4 C	1.03
		41	62	14	286	237	0.7	52	25	122	5.4	2.9	1.16
		42	53	14	336	229	0.8	63	17	115	5.8	3.1	1.15
	5 L	43	<i>о</i> р	18	229	156	1.0	79	29	148	5.6	3,0	1.15
		44	82	15	201	180	6 0	67	26	165.	6.9	- 1	1.11
Female		45	74	20	247	175	0.3	74	30	107	5.9	3.1	1.11
		46	62	15	177	158	0.4	57	24	135	5.8	3.2	1.23
		47 a)	I	1	ı	I	I	I	3	I	1	1	I
	25	48	66	17	321	263	0.7	81	58	142	6.0	3.2	1.14
		49	75	19	167	162	1,0	64	29	154	5.6	3.0	1.15
		50	56	15	320	194	0.8	75	41	192	5.7	3.1	1.19
		51	56	22	346	95	1.2	101	40	155	5.8	3.3	1.32
		52	63	23	229	108	1.2	71	26	111	5.9	3.3	1.27
		53	68	19	496	87	1.1	60	35	130	5.8	3.2	1.23
		54	58	19	212	83	2.4	80	59	134	6.3	3.3	1.10
	125	55	65	22	304	129	1.3	82	42	116	6.3	3.6	1.33.
		Recovery											
		202	ດ ເມ	17	189	240	8.0 9.9	61	21	166	6.2		1.14
		- 0 0	202	- 0		101	n 0 - 0	200	22	211	4.0 4.0	* c • c	1.10
		0 0 0 10	74	2 C	134	104 201	9.C	200	44 22	123	00 7 10	2 CT 2 CT 2 CT	1.01
		60	75	50	188	245	1.0	100	1 CO 1	114	9.6		1.06

a) Dead animal.

B11-0836

Addendum 9-3 Twenty-eight-day repeated-dose oral toxicity study in rats Blood chemical data of individual animals

•••

								and a second sec			1
	Exp. group		BUN	Creatinine	T-Bil	Ca	IP	ka	K	C1	
Sex	(ng/kg/day)	Animal No.	("IP/Su	(mg/dL)	(ng/dL)	(mg/dL)	(Tp/Su)	( <u>m</u> Eq/L )	(T/ b3m)	(1/bgu)	
And a second		1	7.6	0.28	0.05	9.3	7.2	144	4.4	106.5	1
		01	9.5	0.25	0.06	9.8	7.3	141	4.6	106.0	
		ო	7.7	0.2	0.06	9.7	, . @	.43	4.8	106.0	
		4	6.9	0.24	0.07	9.6	7.0	143 143	4.7	103.7	
	Vehicle	ŝ	13.5	0.24	0.06	10.5	8.4	142	3.8	104.9	I
	control	Recovery		***							l
		9	13.6	0.29	0.08	9.4	7.0	143	4.6	106.8	
		6	13.7	0.25	0.08	9.5	6.7	145	4.3	106.6	
		8	11.7	0.21	0.07	9.4	6.5	145	4.1	106.9	
		თ	14.8	0.26	0.07	9.7	7,3	145	3.9	108.3	
		10	16.8	0.27	0.06	10.3	8.1	144	4.2	105.1	
		11	10.5	0.21	0.06	9.5	7.8	140	4,3	102.1	
		12	9.4	0.21	0.07	9.6	7.8	142	4.2	106.0	
	ŝ	13	8.8	0.25	0.06	9.8	7.8	143	4.1	103.8	
		14	7.5	0.21	0.08	9.8	7.9	143	4.4	103.4	
Male		15	8.6	0.21	0.07	9.8	7.9	142	4.5	102.6	1
	•	16	11.3	0.25	0.08	9.2	7.6	141	4.5	104.1	
		17	1.8	0.19	0.07	9.4	7.5	143	4.3	106.7	
	25	18	7.4	0.22	0.08	9.3	8.7	143	4.3	+05,3	
		19	9.9	0.21	0.09	9.6	7.9	143	4.2	103.6	
		20	11.1	0.25	0.05	10.1	10.4	142	4.5	105.3	i
		21	8.5	0.23	0.07	9.4	7.7	143	4.7	105.6	
		22	9.2	0.2 ₆	0.06	9.5	7.0	142	3.8	105.7	
		23	10.0	0.2	0.09	9.3	8.5	141	4.6	102.2	
		24	9.4	0.26	0.14	9.1	8.2	142	4.4	103.2	
	125	25	10.8	0.20	0.09	10.7	9.6	143	4.9	105.9	1
		Recovery					•				
		26	15.7	0.24	0.06	9.0	7.1	144	4.4	106.5	
		27	13.0	0.25	0.05	8.9 0	8	144	4	107.6	
		000	16.1	0.23	0.06	G	7.1	144	4.4	108.D	
		200	16.0	0.28	0.07	0 7	0,-	143	4.0	108.4	

•
Addendum 9-4 Twenty-eight-day repeated-dose oral toxicity study in rats Blood chemical data of individual animals

B11-0836

-. 105.7 105.1 106.1 104.5 104.5 106.0 106.1 106.1 106.7 106.8 106.3 107.7 110.0 109.9 106.0 106.0 (ngd/L) ដ ( <u>n</u>£q/L ) 44444 03 COOH H 4 10 10 10 10 10 10 4 1- 10 10 r0r98 4 *** 4 90999 4 4 4 ৰা বা বা -0 4 4 4 4 54 (mEq/L) 44444 44444 222200 04444 04644 046644 Na IP (ng/dL) 8-7-8 8-0-8 8-9-0-8 0000-1-10-100 Ca (mg/dL) တက္ကက္လ CN 10 - 00 -თთთთთ 00000 0.05 0.05 0.04 0.06 0.03 0.08 0.06 0.05 0.11 (mg/dL) T-Bil Creatinine (Jb/gm)  $\begin{array}{c} 0.26\\ 0.25\\ 0.25\\ 0.24\\ 0.24\\ 0.24\end{array}$ 222332 00000 BUN (mg/dL) 10.7 11.0 11.9 121121 74112 86.408 80.408 Antmal No. ିକ Recovery 55 58 58 60 60 Vehicle control (mg/kg/day) Exp. group ю 252 125 Fenale Sex

a) Dead animal.

Addendum	10-1	Twenty-e Urinalyt	sight-day re	peated- individ	dose or lual ani	al toxicity study in rats mals	B11-0836
	Exp	dno.2.		Urine	volume	Sp.Gr.	
Sex	(BE)	kg/day)	Animal No.	( TE )			
			1	10		1,022	
			2	ιQ		1.050	
			ę	თ		1.024	
			4	တ		1.030	
	-	Vehicle	ŝ	ო		1.084	
		control	Recovery				
			9	21		1.013	
			<u>-</u>	18		1.020	
			· 00	12		1.029	
			0	9		1.048	
			10.	14		1.027	
				сı		1.038	
			C3	~1		1.090	
		<del>د</del> ر	- 1 F	4		1.052	
			14	ς, τ		1.070	
Male			15	ß		1.033	
			9	2		1.081	
			77	01		1.033	
		25	81	c0 t		1.026	
			6 1	~ u		1.027	
			0+0	0		1.038	
			1 <u>-</u> 1	7		1.040	
			22	თ		1.023	
			23	~		1.040	
			24	19		1.013	
		125	25	15		1.018	
			Recovery				
			26	16		1.034	
			27	10		1.010	
			28	30		1.040	
			29	2		1.038	
			30	თ		1.029	

- 176 -

Addendum	10-2	Twenty-e Urinalyt	eight-day re tic data of	pea ted-do: Indivídual	se ora I anjm	l toxicity study als	r in rats	B11-0836
	Exp	.group		Urine vol	am	Sp. Gr.		
Sex	/3m)	kg/day)	Animal No.	(TE)				
			31	9		1.021		
			32	18		1.007		
				۲-		1.024		
			4	80		1.012		
		Vehicle	- 10 - 10	m		1.064		
		control	Recovery					
		ι.	36	11		1,021		
			37			1.026		
			38	+6 1		1.035		
			39	13		1.050		
			40	9-		1.014		
			41	10		1.014		
			42	011		1.038		
		ഹ	43	~ 0		1.020		
			44	10		1.030		
Fenale			45	0		1.021		
			46	4		1.034		
			47a)	I		1		
		25	48	ო		1.036		
			49	ß		1.034		
			50	3		1.054		and a substantian from the
			51	7		1.010		
			52	æ		1.024		
			53	11		1.017		
			54	<del>о</del>		1.031		
		125	55	4		1.040		
			Recovery					
			56	Ţ		1.038		
			57	8		1.026		
			58	<del>о</del>		1.024		
			50	12		1.016		
			60	7		1.030		

a) Dead animal.

.- 177 --

Addendum 10-3	Twenty-eigh	t-day repeated ta of individual	-dose oral toxi animals	city study in rats				B11-0836
	Exp.group		Color	Turbidity	Hđ	Protein	Glucose	Occult blood
Sex	(mg/kg/day)	Animal No.			•			
		1	Y	NT	6.5	+1		
		8	X	NT	6.5	2+	I	1
		3	7	LN LN	6.5	+	•	I
		4	7	ty	6.5	+-	I	ł
	Vehicle	ຎ	۲	ħ	6.0	2+	ļ	1
•	control	Recovery		****				
		9	۶۲	Ę	7.0	+1	I	ŗ
		2	SY	NT	0	+1	I	1
		œ	7	LN	ر م	+	1	I
		ð	7	Łz	ğ,5	<u>+</u>	I	I
		10	SY	TT.	Ø,0	+	J	
		11	Y	NT	ۍ	+1	.1	
		12	Y	EN	0.	2+ 2	I	1
	ഹ	13	۲	ħ	5:2 26:21	2+	I	I
		14	۲	NT	0-0	2+	ł	1
Male		15	Y	NT	5	1+	-	
		16	Y	NT	9°0	2+	-	Ŧ
	4	17	Y	Ł	5	+	1	
	22	18	<u>ک</u>	NT	6.5	+	1.	1
		19	≻:	Z	ומ	+ -	1	
		20	Y	NT	6.5	2+	-	]
		21	Y	NT	<b>8</b> .0	+	1	
		22	×	Ł	6.5	+	1	ł
		23	7	NT	6.5	+1	I	1
		24	SΥ	NT	6.5	H	1	1
	125	25	٢	NT	6.5	1+	1	
		Recovery						
		26	SY	EN	7.0	H	J	ł
		27	γ	E	6.5	1+	I	ł
		28	SY	LN LN	7.0	+1	ł	-
		29	Y	Ę	0.7	+1	1	-
		30	Y	NT	6.5	+		
SY, Slightly yello Y, Yellow. NT, Not turbid.	W.			•				•

•

• .

- 178 -

In rats	
study	
toxicity	
e oral 1	als
sop-p	ul anim
epeate	dividue
-day r	ca of in
r-eight	ric dat
Twenty	Urinaly
-4-0]	•
ldum 1	
Adden	

B11-0836

Occult blood

Glucose

Protein

Hď

Turbidity

Color

Exp.group (mg/kg/day) Animal No.

Sex

1 1 +1-1-1

6.0 6.0 6.0 7.0 7.0

EZEZE

੶ਲ਼**≻**ਲ਼੶

ver. ю З

Re

Vehicle control

1

T

|||

+++±++

6.5 6.5 7.0

<u>አ</u>ィィッジ

Sogo 3

L l 1

++++

2249

ŝ

Female

+

SY, Slightly yellow. Y, Yellow. NT, Not turbid. a) Dead animal.

11111

1 | | | |

±++++±

6.0 6.5 6.5 6.5

55555

~~%%~~

Recover 56 57 58 59 60

1111

1

L I L

#####

⋧≻⋩≻

22.22.2

125

25

I. I *+*

Addendum 10-5	Twenty-eigl Urinalytic de	nt-day repeated- ata of individual	-dose oral toxicity study ir animals (Urinary sediment	n rats			B11-0836
	Exp.group		Red blood calls ^{a)}	White blood cells ^{a)}	Epithelial cells ^{a)}	Casts ^{b)}	Crystals ^{el}
Sex	(mg/kg/day)	Animal No.					
		-	0	0	2	0.	4-
		0	0	<b>4</b>	8	0	‡
		ŝ	0	0	4	0	14
		4	0	0	7	0	F 1
	Vehicle	ŝ	0	0	1	0	‡
	control	Recovery				خدة بلية سود ويتوجد المركب المركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة	
		6 4)	I	•	•	ı	r
		(P	•	ŀ	•	.1	ł
		8 e)	ł	L	,	•	•
		6 6	·		ı	ı	ı
		10 4)	•	ŧ	•	•	•
		9 11					
		10 41	•	a I	<b>t</b> 1	•	•
	u	4 6	8	•	•	ŧ	2
	2		•	•	F	•	•
		14.6	•	t	•	,	8
Male		10 e)	•		-	•	ð
		16 4)	<b>1</b>				4
		17 4)	1	r	·		ı
	25	18 4)		ŀ	•	1	ŗ
		19 4)	•	•	1	ł	ı
		20 e)	ŧ	ŀ	ł	ſ	4
-		21	0	0	5	0	
		22	, . (	, i	)	• c	÷
		33		0	4 4	> c	11
		24	ò	œ	<del>ب</del> ب	> C	
	125	25	0	• C	at		t
		Paconan		·····			
		26 d	•	•	·	•	,
		27 d)	ı	3	•		ı
		28 4)	1	· 1		•	ı
		29 d	ı	,	· •	,	,
		30 4	·	•		,	,
a) Number of cells	110 views (X	400).					
b) Number of cast	s/18×18 mm						
c) Incidence of cr.	vstals/18×18	· · · · ·					
d) Not examined.							

.

.

B11-0836

- 180 -

Addendum 10-6	Twenty-eight Urinalytic dat	t-day repeated- ta of individual	-dose oral toxicity study ir animals (Urinary sediment)	i rats			B11-0836
	Exp.group		Red blood cells ^{a)}	White blood cells ^{a)}	Enithelial cells ^{a)}	Casts ^{b)}	Crystals ⁶⁾
Sex	(mg/kg/day)	Animal No.					
		31	0		1	0	
		32	æ	0	ŝ	0	+1
		33	» (	2	4	0	I
		34	þ	0	0	0	H
	Vehicle	35	0	Ō	1	0	1
	control	Recovery		والمتعارفة والمقاربة والمتعارفة والمتعارفة والمتعارفة والمعارفة والمعارفة والمعارفة والمتعارفة والمتعارفة			
		36 4)	3	r	ı	•	1
		37 a	•	•	ł	•	
		38 4)	ı	•	•	8	
		39 w	ı	F	ł	ı	ŀ
		40 d)	•	•	•	•	ı
		4] d)		•	*	*	
		42 a	·	·	1	ı	•
	ເດ	43 d)	ŀ	ŧ	•	ı	ı
	•	. 44 0)	ı		ŀ	ŀ	1
Female		45 a	•	•	•	•	,
		15 T					
		40 a	1	ı	•	ſ	•
	1	47 e)	•	•	,	ı	4
	55	48 4)	ł	I	•	•	,
	×	49 4)	\$	ŀ	ı	٠	•
		50 a)	I	ŧ	1		•
		51	0	2	4	0	
		52	.0		-ب ۲	Ō	÷I
		13		• <b>-</b>	• =	) C	
		54	• <b>c</b>	<u>ہ</u> د	> c		I
	125	55	00	0	> <<	0	I
		Recovery		ليهين فالمعادمة والمربوبات والاستعاد والمعالية والمحادة والمتعاولة والمعاولة والمعاولة والمعالية والمعارية والم	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		56 d)	,	•	•	ſ	,
		57 a)	,	,	ŀ		
		58 4)	ı	ı		·	•
		59 a	ı	•	•	•	•
		60 d)	•				·
Merchan of call	~)	1001					
a) lyumber of cer	s/ tu views <>	400 <i>)</i> .					
CO INUINO OI CON	(S/ 10 ~ 10 IIII	a					
c/ inclaence of ci	'ystais/ 10 × 10	. un					

- 181 -

d) Not examined. e) Dead animal.

B11-0836

.

Addendum 11-1 Twenty-eight-day repeated-dose oral toxicity study in rats Absolute organ weights of individual animals

.

ody weight (g)	299.7 316.9	295.7	306.7	377.3		354.1	357.3	335.4	306.6	388.9	321.7	314.4	337.7	315.2	282.0	295.6	340.2	311.5	279.4	260.0	327.7	288.4	288.0	319.4	282.1		328.4	327.8	334.4	348.9 333.3
Adrenal B. (mg)	55.2 50.5	44.4	59.1	52.5		51.6	47.0	43.6	42.0	43.8	49.9	48.1	49.4	56.0	41.2	39.4	54.1	39.3	42.1	42.1	35.2	40.8	50.9	40.0	61.3		32.8	53.4	50.6	45.3 45.4
Thymus (mg)	488.8 32.0 1	548	478.4	593.0		355.7	433.9	435.9	304.0	497.6	569.4	499.2	482.9	444.1	469.7	508.1	552.9	486.9	421.3	300.8	688.3	441.2	397.4	369.5	425.5		517.5	294.8	526.4	509.3 410.9
Spleen (g)	0.41	0.51	0.47	0.79		0.61	0.49	0.49	0.58	0.67	0.63	0.49	0.49	0.54	0.46	0.54	0.61	0.53	0.57	0.67	0.69	0.37	0.51	0.38	0.48		0.59	0.58	0.69	0.49
Brain (g)	1.91 1.86	1.79	1.95	1.90		1.95	2.07	2.04	1.97	2.05	1.87	1.90	2.16	2.10	1.95	1.92	2.01	$1.9_{3}$	1.88	1.86	1.93	1.92	1.92	1.99	1.96		1.97	1.90	1.96 	2.03 1.03
Ovary (mg)	11	. 1	ſ	1		1	I	I	1	1	1	1	I	1	1	1	I	1	I	I	I	I	I	1	1		I	1	I	1 1
(pididymis (g)	0.75	0.64	0.61	0.68	للتكريخ والمتحدية فيتحدثها والمتحد	1.00	1.00	0.93	0.96	1.01	0.60	0.68	0.67	0.70	0.64	0.75	0.74	0.66	0.68	0.48	00	0°0 00	0,68	0.85	0.65		0.94	1.02	0.99	1.01
Testis (g)	3.19 2.63	2.65	2,65	2.75		3,16	2.73	2.83	2.67	3.04	2.59	\$.59	2.84	2.70	2.65	2.92	. 92	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.77	1, 13	2.62	2.00	2.82	3,28	2.65		3.22	3.08	3.21	3.07
Kidney (g)	1.94 2.16	2.27	2.07	2.39		2.17	2.47	2.61	2,22	2.49	2.42	2.37	2.29	2.51	1.97	2.44	2.90	2,42	2.09	1.91	.2.46	2.18	2.57	2.46	2.55		2.29	2.53	2.29	2.38
Heart (g)	0.96 1.04	0.96	1.05	1.15		1.07	1.09	1.00	0.09	1.13	0.56	л м	1.1.	1.00-1	1.03	$1.1_{0}^{1}$	ה בי ייד		0.38	$0.8^{3}$	1.10	0.93	1.01	1.09	1.01		1.03	1.08	1.10	1.10
Liver (g)	8.92 10.55	9.36	10.49	14.66		8.83	9.02	8.74	8, 18.	13. <del>2</del> 3	9.a2	11.71	11.12	10.05	8. ⁹ 8	9. 2	12.89	10.95	3.60	18.9 <u>~</u>	138	10.11	1.89	12.72	12.59		8,68	8.46	8.87	8,98 8,98
unimal No.	-1 02	က	4	Q	lecovery	9	2	œ	ß	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	lecovery	50 50	27	20 0	808
Exp.group mg/kg/day) /				Vehicle	control								ß					25							125	, guñið				
Sex (1										1	ł				Male	I				1	I									

8
œ
0
1
-
****
∞.

1

.

Addendum 11-2 Twenty-eight-day repeated-dose oral toxicity study in rats Absolute organ weights of individual animals

.

Sex	Exp.group (mg/kg/day)	Animal No.	Liver (g)	Heart (g)	Kidney (g)	Testis (g)	Epididymis (g)	Ovary (mg)	Brain 1(g)	Spleen (g)	Thyaus (ag)	Adrenal (mg)	Body weight (g)
		48884 7384	6.67 6.07 6.14 5.38	0.75 0.81 0.77	1.52 1.52 1.29			74.9 69.2 77.7	1.84 1.85 1.85	0.37	489.5 429.3 363.4 201.4	57.5 46.8 78.8 79.8	217.1 200.6 189.7
	Vehicle control	35 Becovery 36	7.09 5.25	0.74	1, 46 1, 46	1   1	] ‡ ]	63.2 63.2 54.8	1.84 1.81	0.43	419.7 334.8	52.0 44.2	208.7 208.7 211.7
		333 282 200 200	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.98 0.83 0.77 0.77 9.79	1.40 1.65 65 65 65	I I I I	1111	88. 88. 89. 80. 80. 80. 80. 80. 80. 80. 80. 80. 80	1.90 1.89 1.83 483	00.49 46 46 46 46 46	346.2 388.0 299.7 454.5	72.5 58.4 51.1 58.0	243.1 231.6 248.1 248.1
feaale	ນວ	41 42 45 45	8 7.00 8.94	0.9000 0.900 0.22000 0.22000	1.60 1.48 1.55 1.55	111		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.79 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	0.32 0.41 0.42 38 0.42 38	318.3 384.5 472.3 495.2 503.5	49.6 88.0 67.0 40.2 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	222004 24004 24002 24002 24002 24002 24002 24002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 25002 2500000000
	5 2 2	46 47 a) 48 49 50	1 12 75 75 75 75 75 75 75 75 75 75 75 75 75	0.75 1.11 0.73 0.77 0.77	1.59 2.36 1.64 49	1111	1111	728.0 728.0 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 728.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 729.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2 720.2	1111 88.0 89.0 80.0 80.0 80.0 80.0 80.0 80.0	0.34 0.43 0.43 0.49 0.49	432.9 618.0 469.8 408.8 430.6	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2212 242 242 242 25 25 25 25 25 25 25 25 25 25 25 25 25
	125	ດ ຊາຊາຊາຊາ ຊາຊາຊາຊາຊາຊາຊາຊາຊາຊາຊາຊາຊາຊາຊ	2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.72 0.73 0.80 0.81	1.53 1.53 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	81134	]   ]   ] ]	77.0 68.9 82.7 76.6 83.1	1.81 1.88 1.88 1.78 1.78	0.35 0.34 0.39 0.38 0.38	399.0 397.1 564.1 441.9 519.7	46.3 56.3 65.2 45.2 25.3 45.3	186.1 193.0 218.5 239.0 210.1
		Recovery 56 58 59 60	6.21 6.19 6.41 75 39	0.81 0.76 0.81 0.81 0.81		1111		8.97 82.8 82.9 11.7 82.9	$\begin{array}{c} 1.89\\ 1.97\\ 1.92\\ 1.87\\ 1.94 \end{array}$	0,44 0.42 0.43 0.46 0.46	386.8 359.7 316.7 409.9	88.4 54.1 68.5 70.8 52.5	182.9 201.4 262.2 283,9
a) Dead a	ninal.												

- 183 -

.

B11-0836

Twenty-eight-day repeated-dose oral toxicity study in rats Relative organ weights of individual animals

Addendum 12-1

weight

Body (g)

299.7 316.9 295.7 306.7 377.3

328.4 327.8 324.4 348.9 333.3

									-			
Sex	Exp.group (mg/kg/day)	Aninal No.	Liver (g/100g)	Heart (g/100g)	Kidney (g/100g)	Testis (g/100g)	Epididymis (g/100g)	0vary (mg/100g)	Brain (g/100g)	Spleen (g/100g)	Thysus (mg/100g)	Adrenal (mg/100g)
		~~ 03	2.98 3.33	0.32 0.33	0.65 0.68	1.06 0.83	0.25 0.20	5 )	0.64 0.50	0.14 0.19	163.1 103.8	18.4 15.9
		ო	3.17	0.32	0.77	0.90	0.22	ł	0.61	0.17	183.4	15.0
		ት፣	3.42	0.34	0.67	0.86	0.20	ł	19 0	0.15	155.3	19.3
	Vehicle	5	3.89	0.30	0.63	0.73	0.18		0.50	0.21	157.2	13.9
	control	Recovery										
		<del>ဖ</del> ၊	2.49	0.30	0.61	0.89	0.28	ı	0.55	0.17	100.5	14.6
		2	2.52	0.31	0.69	0.76	0.28	ı	0.58	0.14	121.4	13.2
		œ	2.61	0.30	0.78	0.84	0.28	1	0.61	0.15	$1_{3}0.0$	13.0
		6	2.67	0.32	0.72	0.87	0.31	1	0.54	0.19	99.2	13.7
		10	3.48	0.29	0.64	0.78	0.26	1	0.6	0.17	1,8.0	11.3
		11	3.08	0.30	$\frac{1}{0.75}$	0.81	0.19	3	0.68	0.20	1-7.0	15.5
		12	3.53	0.36	0.75	0.82	0.22	3	0.60	0.16	158.8	15.6
	n	13	3.26	0.31	0.68	0.84	0.20	1	0.64	0.15	143.0	14.8
		14	3.47	0.35	0.80	0.86	0.22	ı	0.67	0.17	140.9	17.B
Male		15	3.11	0.37	0.70	0.94	0.23	1	0.69	0.16	166.6	14.
		16	3.32	0.38	0.83	0.99	0.25	1	0.55	0.18	171.9	13.3
		17	3.82	0.35	0.85	0.86	0,22	1	0.69	0.18	162.5	15.9
	25	18	3 . 35	0.34	0.78	0.92	0.21	1	0.62	0.‡7	156.3	12.0
		19	3.46	0 - 35	0.75	0.99	0.24	1	0.77	0,20	110.8	
		20	3.45	0.36	0.73	0.40	0.18	1	02	0.26		10.2
		21	$4.0_{0}^{2}$	0.34	0.75	0.80	0.18	1	0, 59	0.21	<u>2</u> ,0.0	10.7
		22	3.70	0.32	0.76	0.97	0.23	1	0.67	0.13	1,3.0	1 <b>4</b> .1
		23	4,00	0.35	0.89	1.01	0.24	1	0.67	0.18	1 ^{38.0}	17.7
		24	3,98	0.34	0.77	1.03	0.20	1	0.62	0.12	115.7	12.5
	125	25	4.46	0.36	0.90	0.94	0.23	1	0.69	0.17	150.8	21.7
		Recovery										
		26	2.64	0.31	0.70	0.98	0.29	1	0.60	0.18	157.6	10.0
		27	2.58	0.33	0.77	0.94	0.31	1	0.58	0.18	88.9	16.3
		28	2.58	0.33	0.68	0.96	0.30	1	0.59	0.21	157.4	10.1
		29	2.49	0.32	0.68	0.88	0.29	1	0.58	0.14	146.0	15.0
		30	2.69	0.32	0.83	1.03	0.29	1	0.60	0.17	123.3	13.6

B11-0836

in rats	
study	
toxicity	animals
oral	Vidual
ed-dose	of indi
repeat	eights
ght-day	organ w
Twenty-ei	Relative
12-2	
Addendum	

Body weight (g)	217.1	200.8	189.7	197.7	208.7		211.7	243.1	231.6	212.9	248.1	104.5	109.2	2,0.8	2,0.9	$1^{40}_{24}.5$	24:4	214.1	129.2	29 ⁵ .5	22 . 7	186.1	193.0	218.5	239.0	210.1		182.9	201.4	234.0	262.2	228.9
Adrenal (mg/100g)	26.5	23.3	31.0	27.2	24.9		20.9	29.8	25,2	24.0	23.4	25.5	31,1	24.8	27.5	25.2	57.6	22.6	5.7.8	42 · 3	20.1	24.9	3 <u>6</u> .5	8 9	27.2	21,6		37.4	26.9	29.3	27.0	22.9
Thymus (mg/100g)	225.5	214.0	191.6	142.2	201.1		158.1	142.4	167.5	146.8	182	162.7	1000	10.00	202.6	6.8 8 1	2-3,8	205.8	275,8	130.5	187. <u>8</u>	294.4	215,8	208.2	164.9	247.4		211.5	178.6	135.3	203.9	179.1
Spleen (g/100g)	0.20	0.18	0.18	0.16	0.19		0.20	0.20	0.19	0.22	0.17	0.16	0.18	0.18	0.17	0.20	0.16	0.19	0.22	0.22	0.23	0.19	0.18	0.18	0.18	0,18		0.24	0.21	0.18	0.18	0.17
Brain (g/100g)	0.85	0.92	0.96	0.91	0.88		0.85	0.78	0.82	0.86	0.74	0.92	0.93	0.78	0.77	0.92	0.89	0.86	0.90	0.87	0.87	0.97	0.97	0.86	0.74	0.91		1.03	0.98	0.82	0.71	0.85
0vary (mg/100g)	34.5	34.5	41.0	42.8	30.3		25.9	34.7	27.6	34.5	38.	28.8	26.4	34.5	42.5	32.7	33.1	, 31.2	36.1	32.6	33,4	41.6	35.7	37.8	32.1	30.0		40.6	31.2	31.5	24.4	36.2
Epididymis (g/100g)	ì	1	1	1	1		ı	ı	J	ı	1	I	ı	ı	ı	ł	I.	1	1	I	1	F	1	I	ł	ł	1388	I	1	I	1	1
Testis (g/100g)	1	1	ł	1	ı		1	1	1	Ļ	I	1	J	ł	1	1	1	1	I	1	1	1	ł	I	;]	ł		ł	4	1	I	1
Kidney (g/100g)	0.67	0.76	0.68	0.71	0.73		0.69	0.72	0.63	0.78	0.67	0.82	0.74	0.87	0.76	0.77	0.75	Q.05	0.75	0.72	0.68	0.82	0.80	0.83	0.77	0.88		0.87	0.69	0.68	0.65	0.71
Heart (g/100g)	0.35	0.40	0.41	0.37	0.35		0.35	0.40	0.36	0.36	0.32	0.41	0.40	0.39	0.38	0.37	0.35	<u>0.50</u>	0.37	0.34	0.35	0.39	0.38	0.37	0.36	0.39		0.44	0.38	0.35	0.36	0.35
Liver (g/100g)	3.07	3.03	3.24	2.72	3.40		2.48	2.77	2.63	2.61	2.80	2.88	2.91	3.07	3.34	3.04	3.08	5.46	3.49	3.33	3.77	3.51	3.g2	4. ¹⁵	3,96	3.98		3.40	3.07	2.74	2.96	2.79
Animal No.	5 G	NT () ()	33	34	35	Recovery	36	37	38	39	40	41	42	43	44	45	46	47 a)	48	49	50	51	52	53	54	55	Recovery	56	57	58	59	60
Exp.group (mg/kg/day)					Vehicle	control								Ω					25							125						
Sex																Fenale																

a) Dead animal.

Sex	Exp.group	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
Male		1	ta	No abnormalities detected	Heart Focal myocarditis +
		2	ta	No abnormalities detected	Kidney Basophilic tubules+
	Vehicle control	3	ta	No abnormalities detected	Kidney Focal hyperplasia of tubular epithelium+ Prostate
					Round cell infiltration +
		4	ta	No abnormalities detected	No abnormalities detected
		5	ta	No abnormalities detected	Kidney Basophilic tubules +

# Addendum 13-1 Twenty-eight-day repeated-dose oral toxicity study in rats

a) Organs/tissues examined as follows: trachea, lungs, incisor, forestomach, glandular stomach, duodenum, je junum, ileum, cecum, colon, rectum, liver, heart, kidneys, urinary bladder, testes, epididymides, prostate, seminal vesicle, cerebrum, cerebellum, pons, spinal cord, sciatic nerve, bone marrow, axillar lymph node, mesenteric lymph node, spleen, thymus, pituitary gland, thyroid, parathyroid, adrenals and eye ball.

ta, terminal autopsy.

		Pathological	tindings o	t mar	vidual animais	
	Sex	Exp.group	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		Vehicle control (Recovery)	6	ta	No abnormalities detected	No abnormalities detected
			7	ta	No abnormalities detected	No abnormalities detected
	Male		8	ta	No abnormalities detected	No abnormalities detected
			9	ta	No abnormalities detected	No abnormalities detected
		10	ta	No abnormalities detected	No abnormalities detected	

Addendum 13-2 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: incisor, liver, heart, kidneys and testes. ta, terminal autopsy.

	Pathologica	l findings c	of indi	vidual animals	
Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		11	ta	No abnormalities detected	No abnormalities detected
	5		12 ta No abnormalities detected	No abnormalities detected	No abnormalities detected
Male		13	ta	No abnormalities detected	No abnormalities detected
		14 ta No	No abnormalities detected	No abnormalities detected	
		15	ta	No abnormalities detected	No abnormalities detected

Addendum 13-3 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: incisor, liver and kidneys.

ta, terminal autopsy.

•...

	Pathologica	d findings c	of indi	vidual animals		
Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}	
	25	16	ta	No abnormalities detected	No abnormalities detected	
			17 ta N	No abnormalities detected	No abnormalities detected	
				18	ta	No abnormalities detected
Mala		19	ta	No abnormalities detected	No abnormalities detected	
IVIAIC		20	ta	Testis	Testis	
				Small (bilateral)	Diffuse atrophy of seminiferous	
				Softening (bilateral)	tubules +++	
					Levdig cell hyperplasia ++	

Addendum 13-4 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: incisor, liver, kidneys and macroscopic lesion.

ta, terminal autopsy.

++, moderate; +++, severe.

Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		21	ta	Liver	Incisor
				Enlargement	Decreased iron pigments of
					ameloblasts at maturation stage +
					Liver
					Periportal hypertrophy of
					hepatocytes +
					Periportal prominent nucleoli of
					hepatocytes +
					Heart
				·	Focal myocarditis +
		22	ta	Oral cavity	Incisor
				Mottled teeth (lower incisors)	Cyst formation in papillary layer 4
					Decreased iron pigments of
					ameloblasts at maturation stage +
					Liver
Male	125				Periportal hypertrophy of
					hepatocytes +
					Periportal prominent nucleoli of
					hepatocytes +
					Kidney
					Basophilic tubules +
		23	ta	Liver	Liver
Enlargement	Enlargement	Periportal hypertrophy of			
				-	hepatocytes +
		24	ta	Oral cavity	Incisor
				Mottled teeth (upper incisors)	No abnormalities detected
			Liver	Liver	
				Enlargement	Periportal hypertrophy of
					hepatocytes +
					Periportal prominent nucleoli of
					hepatocytes +

#### Addendum 13-5 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: trachea, lungs, incisor, forestomach, glandular stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver, heart, kidneys, urinary bladder, testes, epididymides, prostate, seminal vesicle, cerebrum, cerehellum, pons, spinal cord, sciatic nerve, bone marrow, axillar lymph node, mesenteric lymph node, spleen, thymus, pituitary gland, thyroid, parathyroid, adrenals and eye ball.

ta, terminal autopsy.

Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		25	ta	Liver	Incisor
Male				Enlargement .	Decreased iron pigments of ameloblasts at maturation stage + Irregular alignment of ameloblasts at maturation stage +
	125				Liver Periportal hypertrophy of hepatocytes + Single cell necrosis of hepatocytes +
	•				Kidney Dilatation of tubules +

#### Addendum 13-6 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: trachea, lungs, incisor, forestomach, glandular stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver, heart, kidneys, urinary bladder, testes, epididymides, prostate, seminal vesicle, cerebrum, cerebellum, pons, spinal cord, sciatic nerve, bone marrow, axillar lymph node, mesenteric lymph node, spleen, thymus, pituitary gland, thyroid, parathyroid, adrenals and eye ball.

ta, terminal autopsy.

Addendum	13-7	Twenty-eight-day repeated-dose oral toxicity study in rats
		Pathological findings of individual animals

Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{e)}
		26	ta	Oral cavity	Incisor
				Mottled teeth (upper and lower	No abnormalities detected
				incisors)	Kidney
					Solitary cyst in medulla+
		27	ta	Oral cavity	No abnormalities detected
				Mottled teeth (upper and lower	Incisor
				incosors)	No abnormalities detected
		28	ta	Oral cavity	Incisor
36-1-	125 (Recovery)			Mottled teeth (upper incisors)	Irregular alignment of ameloblasts
Male					at maturation stage +
		29	ta	Oral cavity	No abnormalities detected
				Mottled teeth (upper and lower	Incisor
				incisors)	No abnormalities detected
		30	ta	Oral cavity	Incisor
				Mottled teeth (upper and lower	Irregular alignment of ameloblasts
				incisors)	at maturation stage +
					Kidney
					Basophilic tubules +

a) Organs/tissues examined as follows: incisor, liver, heart, kidney and testes. ta, terminal autopsy.

#### Addendum 13-8 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

Sex	Exp.group	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		31	ta	No abnormalities detected	Uterus
					Endometrial atrophy +
					Vagina
					Mucification of e pithelium ++
		32	ta	No abnormalities detected	Kidney
	Vehicle control				Mineralization in
					cortico-medullary junction +
Famala		33	ta	No abnormalities detected	Kidney
remate					Mineralization in
					cortico-medullary junction+
		34	ta.	No abnormalities detected	Forestomach
					Necrosis of squamous epithelium in
					limiting ridge ±
					Vagina
					Vaginitis +
		35	ta	No abnormalities detected	No abnormalities detected

a) Organs/tissues examined as follows: trachea, lungs, incisor, forestomach, glandular stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver, heart, kidneys, urinary bladder, ovaries, uterus, vagina, cerebrum, cerebellum, pons, spinal cord, sciatic nerve, bone marrow, axillar lymph node, mesenteric lymph node, spleen, thymus, pituitary gland, thyroid, parathyroid, adrenals and eye ball.

ta, terminal autopsy.

±, very slight; +, slight; ++, moderate.

Sex	Exp.group	Animal No	Fate	Macroscopic findings	Histopathological findings ^a
		36	ta	No abnormalities detected	No abnormalities detected
		37	ta	No abnormalities detected	Kidney
	Vehicle control (Recovery)				Mineralization in
tin di Anna					cortico-medullary junction +
Female		38	ta	No abnormalities detected	Kidney
					Mineralization in
					corti co-medullary junction +
		39	ta	No abnormalities detected	No abnormalities detected
		40	ta	No abnormalities detected	No abnormalities detected

#### Addendum 13-9 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: incisor, liver, kidneys, cerebrum, cerebellum and pons.

ta, terminal autopsy.

Addendum	13-10	Twenty-eight-day repeated-dose oral toxicity study in rats
		Pathological findings of individual animals

Sex	Exp.group (mg/kg/dav)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
	5	41	ta	No abnormalities detected	No abnormalities detected
		42	ta	No abnormalities detected	No abnormalities detected
		43	ta	No abnormalities detected	No abnormalities detected
Female		44	ta	No abnormalities detected	No abnormalities detected
		45	ta	No abnormalities detected	Kidney
					Mineralization in
					cortico-medullary junction +

a) Organs/tissues examined as follows: incisor, liver and kidneys.

ta, terminal autopsy.

Addendum	13-11	Twenty-eight-day repeated-dose oral toxicity study in rats	

Pathological	findings (	of ind	rvidual	animals
		sectors and sectors where we do not		and a second

Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
	25	46	ta	No abnormalities detected	No abnormalities detected
		47	fd	Lung	Lung.
				Dark reddish change	Congestion ++
Female					Edema+
		48	ta	No abnormalities detected	No abnormalities detected
		49	ta	No abnormalities detected	No abnormalities detected
		50	ta	No abnormalities detected	No abnormalities detected

a) Organs/tissues examined as follows: incisor, liver, kidneys and macroscopic lesion. ta, terminal autopsy; fd, found dead.

+, slight; ++, moderate.

Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		51	ta	Oral cavity	Incisor
				Mottled teeth (upper incisors)	No abnormalities detected
				Liver	Liver
				Enlargement	No abnormalities detected
				,	Kidney
					Ballooning of tubular epithelium +
		52	ta	Liver	No abnormalities detected
				Enlargement	Liver
					No abnormalities detected
		53	ta	Liver	Incisor
				Enlargement	Decreased iron pigments of
					ameloblasts at maturation stage +
					Liver
					Diffuse hypertrophy of hepatocytes
13	105	54	ta	Liver	Incisor
Female	125			Enlargement	Cyst formation in papillary layer +
					Decreased iron pigments of
					ameloblasts at maturation stage +
					Irregular alignment of ameloblasts
					at maturation stage +
	•				Forestomach
					Necrosis of squamous epithelium in
					limiting ridge +
					Liver
					Diffuse hypertrophy of hepatocytes
		55	ta	Oral cavity	No abnormalities detected
				Mottled teeth (upper incisors)	Incisor
				Liver	No abnormalities detected
				Enlargement	Liver
					No abnormalities detected

#### Addendum 13-12 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: trachea, lungs, incisor, forestomach, glandular stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver, heart, kidneys, urinary bladder, ovaries, uterus, vagina, cerebrum, cerebellum, pons, spinal cord, sciatic nerve, bone marrow, axillar lymph node, mesenteric lymph node, spleen, thymus, pituitary gland, thyroid, parathyroid, adrenals and eye ball.

ta, terminal autopsy.

Sex	Exp.group (mg/kg/day)	Animal No.	Fate	Macroscopic findings	Histopathological findings ^{a)}
		56	ta.	Oral cavity Mottled teeth (upper and lower incisors)	No abnormalities detected Incisor No abnormalities detected
		57	ta	Oral cavity Mottled teeth (upper and lower incisors) Rough surface of incisor (lower incisors)	Incisor Irregular alignment of ameloblasts at maturation stage + Irregular alignment of papillary layer+
Female	125 (Recovery)	58	tạ	Oral cavity Mottled teeth (upper and lower incisors)	Incisor Decreased iron pigments of ameloblasts at maturation stage + Irregular alignment of ameloblasts at maturation stage+
	,	59	ta.	Oral cavity Mottled teeth (upper and lower incisors) Thyroid Ap lasia of left lobe	Incisor No abnormalities detected Thyroid Aplasia of left lobe
		60	ta	Oral cavity Mottled teeth (upper and lower incisors)	Incisor Irregular alignment of ameloblasts at maturation stage +

#### Addendum 13-13 Twenty-eight-day repeated-dose oral toxicity study in rats Pathological findings of individual animals

a) Organs/tissues examined as follows: incisor, liver, kidneys, cerebrum, cerebellum, pons and macroscopic lesion. ta, terminal autopsy.

+, slight.

.

# **APPENDIX 1**

"STABILITY ANALYSIS OF HOMOGENEITY, STABILITY AND CONCENTRATION ANALYSES OF THE TEST SUBSTANCE FORMULATION (Study code: X18-0836)"



Receipt No. 827-06-D-3206

STUDY CODE: X18-0836

# FINAL REPORT

# STABILITY ANALYSIS OF HOMOGENEITY, STABILITY AND CONCENTRATION ANALYSES OF THE TEST SUBSTANCE FORMULATION

May 2007



# **STATEMENT**

I, the undersigned, hereby declare that this report provides a correct English translation of the final report (Study Code: X18-0836, issued on May 23, 2007).



Sieptember 6,2009 Date

# **GLP STATEMENT**



I, the undersigned, hereby declare that this study was conducted in compliance with "Concerning Standard of the Testing Facilities Conducting the Test Relating to the New Chemical Substances" on

I also confirmed that this report accurately reflected the raw data and the test data were valid.

Study Director:

Signed in original

May 23, 2007

# QUALITY ASSURANCE STATEMENT

<u>Sponsor:</u>					
Title:	Stability Analysis of	Homogeneity,	Stability	and	Concentration
	Analyses of the Test Substance F	<u>ormulation</u>			

Study Code: X18-0836

This study was inspected by Quality Assurance Unit of

The dates inspected and the dates reported these results to the

study director and management are as follows

Item of Inspections/Audits	Dates of Inspections/Audits	Dates of Report of Inspections/Audits
Protocol	December 26, 2006	December 26, 2006
IR spectrum of test substance	December 27, 2006	December 27, 2006
Amendment to protocol	January 10, 2007	January 11, 2007
Homogeneity and stability analyses of test substance formulation	January 10, 2007	January 11, 2007
Concentration analysis of test substance formulation	January 22, 2007	January 22, 2007
Reinspection of amendment to protocol	March 8, 2007	March 8, 2007
Raw data and draft final report	May 11, 2007	May 11, 2007
Reinspection of raw data and draft final report	May 18, 2007	May 18, 2007
Draft final report (2nd)	May 23, 2007	May 23, 2007
Final report	May 23, 2007	May 23, 2007

I, the undersigned, hereby declare that this report provides an accurate description of the methods and procedures used in this study, and that the reported results accurately reflect obtained raw data.

Head, Quality Assurance Unit:

Signed in original

May 23, 2007

# TABLE OF CONTENTS

.

	Page
TITLE	3
SPONSOR	3
TESTING FACILITY	3
PURPOSE OF STUDY	3
GLP COMPLIANCE	3
PERIOD OF STUDY ·····	3
STORAGE AND RETENTION PERIOD OF DATA	4
RETENTION OF ORIGINAL DOCUMENTS	4
STUDY DIRECTOR AND PERSONS CONCERNED WITH THE STUDY AND THE	
OPERATION	4
APPROVAL BY AUTHOR	4
SUMMARY	5
MATERIALS	
1. TEST SUBSTANCE	6
METHODS	
1. SUBJECT STUDY	7
2. STABILITY ANALYSIS OF THE TEST SUBSTANCE	7
3. HOMOGENEITY, STABILITY AND CONCENTRATION ANALYSES OF THE	
TEST SUBSTANCE FORMULATION	7
THE ENVIRONMENTAL FACTORS THAT MIGHT HAVE AFFECTED THE	
RELIABILITY OF THE STUDY RESULTS	12
RESULTS AND DISCUSSION	
1. RESULTS	12
2. DISCUSSION	13

# TABLES

1	Homogeneity and stability analyses of the test substance formulation	14
2	Concentration analysis of the dose formulation	14
FIC	GURES	
1	IR spectrum measured prior to the administration period	15
2	IR spectrum measured after the end of the administration period	15
RE	FERENCE	
1	IR spectrum provided by the sponsor	15

Study Code:	X18-0836
Test Substance Code:	HR6851
Sponsor Code:	D-0060

#### TITLE

Stability Analysis of Homogeneity, Stability and Concentration Analyses of the Test Substance Formulation

#### SPONSOR



#### PURPOSE OF STUDY

The purpose of this study is to determine the stability of the test substance during the dosing period, and homogeneity, stability and concentration of the test substance in formulation in "Twenty-Eight-Day Repeated-Dose Oral Toxicity Study of **B11-0836**).

### **GLP COMPLIANCE**

This study was conducted in compliance with "Concerning Standard of the Testing Facilities Conducting the Test Relating to the New Chemical Substances" on

#### Health Department, MOE (November 21, 2003)].

# PERIOD OF STUDY

Commencement of Study: Initiation of Examination (Initiation of Analysis): Termination of Examination (Termination of Analysis): Completion of Study: December 25, 2006 December 27, 2006 March 5, 2007 May 23, 2007

## STORAGE AND RETENTION PERIOD OF DATA

The raw data, protocol, amendment to protocol, study contract documents, test substance information, final report and other record documents will be retained in the archive of the Hita Laboratory of our organization for the same period of B11-0836 paper data. After termination of the retention period, any measures taken will be done so with the approval of the sponsor.

## **RETENTION OF ORIGINAL DOCUMENTS**

An original protocol, an original amendment to protocol and an original final report will be retained at The copies of their original that the study director will be recognized to be accurate copy will be sent to the sponsor.

# STUDY DIRECTOR AND PERSONS CONCERNED WITH THE STUDY AND THE

OPERATION

Study director:

Study staff:



(Preparation of the test substance formulation)

# **APPROVAL BY AUTHOR**

Study director:

Signed in origina<u>1</u>

May 23, 2007

Analytical Chemistry Section

## SUMMARY

The test substance was stable during the dosing period of subject study (Study Code: B11-0836).

The test substance in 1.25 and 0.05 w/v% formulations was stable for 8 days after preparation at cold and dark place and showed good homogeneity. The concentration of test substance in 1.25, 0.25 and 0.05 w/v% dose formulations for subject study was acceptable level.

# MATERIALS

# 1. TEST SUBSTANCE (INFORMATION PROVIDED BY THE SPONSOR)

1.1	Name	
_	Other Name:	
	CASNo.:	
1.2	LotNo.	
	6X002	
1.3	Supplier	
1.4	Structural Formula	
	(Molecular formula:	
1.5	Purity	
	99.7%	
1.6	Names and Concentration of Impur	ities.
	Unknown 0.3%	
1.7	Physicochemical Properties	
	Appearance at ordinary temperature:	clear colorless liquid
	Molecular weight:	
	Stability:	
	Melting point:	—
	Boiling point:	78°C (8 mmHg)
	Vapor pressure:	—
	Density:	1.554 g/cm ³ (25°C)
	Partition coefficient:	—
	Hydrolyzability:	hydrolyzable
	Solubility:	
	Degree of solubility	
	Water:	insoluble

DMSO:	soluble (arbitrary mixable)
Acetone:	soluble (arbitrary mixable)
Others:	_

## **1.8** Storage Conditions

The test substance was stored at room temperature under a light shielding condition (desiccator No. 2 in the test substance storage room, tolerance temperature: 10-30°C).

#### 1.9 Handling Precaution

Gloves, mask, cap and lab coat were worn.

#### METHODS

#### 1. SUBJECT STUDY

Twenty-Eight-Day Repeated-Dose Oral Toxicity Study of in Rats (Study Code: B11-0836)

# 2. STABILITY ANALYSIS OF THE TEST SUBSTANCE

The infrared (IR) spectrum was measured by IR spectrophotometer before and after the dosing period of subject study. Test substance was used under light shield.

## 2.1 Measurement of IR

1)	Instrument	
	IR spectrophotometer:	FT-720 (HORIBA, Ltd.)
2)	Condition	
	Wave number:	$4000 \text{ cm}^{-1}$ - $400 \text{ cm}^{-1}$

3) Pre-Treatment

Potassium bromide neat

## 2.2 Criteria for Judgment

IR spectrum of the test substance that measured prior to dosing in our laboratory should be identical with provided from the sponsor. The test substance was judged to be stable when there are no differences in the IR spectrums at before and after dosing period.

# 3. HOMOGENEITY, STABILITY AND CONCENTRATION ANALYSES OF THE TEST SUBSTANCE FORMULATION

In the homogeneity analysis, the samples were taken (n=1) from the upper, middle and lower layers of formulations immediately after preparation, respectively. These samples were pretreated and measured (n=1) with gas chromatography (GC).

In the stability analysis, the formulations were stored at cold and dark place for 8 days, and the sample was taken (n=1) from the middle layer of the formulations at point of
measurement (5 days and 9 days after preparation). These samples were pretreated and measured (n=1) with GC.

In the concentration analysis, the samples were taken (n=1) from the middle layer of dose formulations immediately after preparation for subject study. These samples were pretreated and measured (n=1) with GC.

Test substance and formulations were used under light shield.

## 3.1 The Test Substance Formulation

- 1) Homogeneity and Stability Analyses
  - (1) Concentration

1.25 and 0.05 w/v%

(2) Preparation Method

Weighed accurately 1.88 g of the test substance, added olive oil (including 0.5% Tween80) to make 150 mL, and used as 1.25 w/v% formulation. After stirred with homogenizer, accurate 4 mL of 1.25 w/v% formulation was diluted with olive oil (including 0.5% Tween80) to make 100 mL, and used as 0.05 w/v% formulation.

Vehicle: olive oil (Fujimi Pharmaceutical)

Polyoxyethylene (20) sorbitan mono-oleate (Tween80, Wako Pure Chemical Industries)

2) Concentration Analysis

The 1.25, 0.25 and 0.05 w/v% dose formulations at first administration for subject study were used.

#### 3.2 Outline of Analytical Method

The analytical method was decided, according to results of validation of the analytical method on non-GLP at the test facility.

1) Validation of the Analytical Method

(1) Preparation for Measurement Sample

a) Standard Stock Solution for Validation of the Analytical Method

Weighed 0.1000 g of the test substance, dissolved in ethyl acetate to make 100 mL, and used this solution as 1000  $\mu$ g/mL standard stock solution for validation of the analytical method.

b) Sample for Specificity

The standard stock solution for validation of the analytical method was diluted with ethyl acetate to make 10.0  $\mu$ g/mL standard solution and 10.0  $\mu$ g/mL vehicle-containing standard solution (containing 10 v/v% vehicle (olive oil including 0.5% Tween80)). Ethyl acetate was used as solvent blank, and vehicle blank (containing 10 v/v% vehicle) was prepared.

c) Sample for Linearity

The standard stock solution for validation of the analytical method was diluted with ethyl acetate to make 5.00,  $10.0^{*1}$  and 20.0 µg/mL standard solutions.

*1: It was used 10.0  $\mu$ g/mL standard solution which prepared in section 3.2.1) (1) b).

d) Sample for Accuracy and Repeatability

Standard solutions (concentration: 5.00, 10.0 and 20.0  $\mu$ g/mL, each concentration: n=3) were prepared in the same way of sample for linearity.

(2) Specificity

Samples for specificity were measured with GC. The variation of detection value (peak area) of the test substance between standard solution with and without vehicle was 0.9%. Therefore, it was confirmed that the result of variation satisfied criteria for judgment (within  $\pm 5\%$ ). In the results of GC analysis of solvent blank and vehicle blank, it was confirmed there were no background and interfiering peaks at the elution peak position of test substance.

(3) Linearity

Samples for linearity were measured with GC. The calibration curve was made by the concentration of the test substance in the horizontal line and the detection value of test substance in the vertical line. The regression formula passed through the origin of the coordinates, and the coefficient of correlation of calibration curve which was obtained from least square was R=0.999. Therefore, it was confirmed that the result of linearity satisfied criteria for judgment (more than 0.999).

(4) Accuracy and Repeatability

Samples for accuracy and repeatability were measured with GC. The concentrations of the test substance were calculated with regression formula that was obtained at linearity. Accuracy and repeatability were calculated with these values.

Accuracy of 5.00 µg/mL standard solution was 0.3,-1.1 and 2.6%.

Accuracy of 10.0 µg/mL standard solution was -1.5, -1.7 and 0.1%.

Accuracy of 20.0 µg/mL standard solution was 0.1, -1.4 and -0.1%.

Repeatability of 5.00, 10.0 and 20.0  $\mu$ g/mL standard solution was 1.9, 1.0 and 0.8%, respectively.

It was confirmed that the result of accuracy and repeatability satisfied criteria for judgment (accuracy: within  $\pm 10\%$ , repeatability: less than 5%).

2) Preparation for Standard Solution

Weighed 0.1001 g of the test substance dissolved in ethyl acetate to make 100 mL, and used this solution as 1001  $\mu$ g/mL standard stock solution. Accurate 2 mL of

standard stock solution diluted with ethyl acetate to make 20 mL, and 100  $\mu$ g/mL standard solution was prepared. Accurate 2 mL of 100  $\mu$ g/mL standard solution diluted with ethyl acetate to make 20 mL, and 10.0  $\mu$ g/mL standard solution was prepared.

3) Pre-Treatment

Formulations were mixed well using a magnetic stirrer.

- (1) Homogeneity and Stability Analyses
  - a) 1.25 w/v% Formulation

Accurate 0.5 mL of formulation was dissolved in ethyl acetate to make 25 mL. Accurate 1 mL of this solution was diluted with ethyl acetate to make 25 mL, and served as a GC sample (dilution rate: 1250).

b) 0.05 w/v% Formulation

Accurate 0.5 mL of formulation was dissolved in ethyl acetate to make 25 mL, and served as a GC sample (dilution rate: 50).

- (2) Concentration Analysis
  - a) 1.25 w/v% Formulation

Accurate 0.5 mL of formulation was dissolved in ethyl acetate to make 25 mL. Accurate 1 mL of this solution was diluted with ethyl acetate to make 25 mL, and served as a GC sample (dilution rate: 1250).

b) 0.25 w/v% Formulation

Accurate 0.5 mL of formulation was dissolved in ethyl acetate to make 25 mL. Accurate 2 mL of this solution was diluted with ethyl acetate to make 10 mL, and served as a GC sample (dilution rate: 250).

c) 0.05 w/v% Formulation

Accurate 0.5 mL of formulation was dissolved in ethyl acetate to make 25 mL, and served as a GC sample (dilution rate: 50).

- 4) Conditions of GC Analysis
  - (1) Instruments (HP6890)

Gas chromatograph:	HP6890 Series
Controller:	G1512A
Auto sampler:	18596C
In jector:	18593B
Data processor:	GC-Chemstation
(2) Conditions	

Column:	HP-1MS (F.T. 0.25 $\mu$ m) 0.25 mm I.D. $\times$ 30 m
Column oven temperature:	100°C
Temperature of injection port:	250°C
Detector:	FID

Detector temperature:	250°C
Injection volume:	2µL
Injection method:	split (split ratio 10:1)
Carrier gas:	helium
Carrier gas flow rate:	1.0 mL/min

## 3.3 Data Processing

1) Detection Value

A peak area was used as the detection value.

2) Quantitative Analytical Method

In validation of the analytical method, the result of linearity was a straight line range of 5.00, 10.0 and 20.0  $\mu$ g/mL standard solutions, and it passed through the origin of the coordinates. Therefore, the concentrations of analytical samples were determined by single level calibration.

 Calculation of the Test Substance Concentration in Formulation Concentration of test substance in each sample (C: w/v%) was calculated with the equation shown below and rounded off to three significant figures.

 $C = \frac{Cs \times A \times D}{As \times 10000}$ 

- Cs: Test substance concentration in standard solution (µg/mL)
- As: Detection value of test substance in standard solution
- A: Detection value of test substance in each GC sample
- D: Dilution rate in each GC sample

#### 3.4 Criteria for Judgment

1) Homogeneity Analysis

The test substance was judged as homogeneous dispersion in vehicle if a coefficient of variation (CV) was within 5%. The CV was calculated using the following equation:

 $CV(\%) = \frac{\text{Standard deviation for concentration of test substance in each layer}}{\text{Mean concentration of test substance in each layer}} \times 100$ 

#### 2) Stability Analysis

The test substance was judged as stable state in vehicle if a rate to the nominal concentration for the actual concentration (R.N.) and a rate to the mean concentration immediately after preparation for the actual concentration (R.P.) were within the range of  $100\pm10\%$ . The R.N. and R.P. were calculated using the following equation:

 $R.N.(\%) = \frac{Actual concentration}{Nominal concentration} \times 100$ 

 $R.P.(\%) = \frac{Actual concentration}{Mean concentration immediately after preparation} \times 100$ 

3) Concentration Analysis

It was confirmed that R.N. was within the range of  $100\pm10\%$ . The R.N. was calculated using the following equation:

$$R.N.(\%) = \frac{Actual concentration}{Nominal concentration} \times 100$$

# ENVIRONMENTAL FACTORS THAT MIGHT HAVE AFFECTED RELIABILITY OF STUDY RESULTS

There were no factors that might have affected the reliability of the study data.

### **RESULTS AND DISCUSSION**

#### 1. **RESULTS**

#### 1.1 Stability Analysis of the Test Substance

IR spectrum of test substance provided by the sponsor (Reference 1) was identical with that measured before dosing period for subject study (Figure 1).

There were no differences in the IR spectra between before and after dosing period (Figures 1, 2).

# 1.2 Homogeneity, Stability and Concentration Analyses of the Test Substance Formulation

1) Homogeneity and Stability Analyses

The results of homogeneity and stability analyses of the test substance formulation are shown in Table 1.

(1) Homogeneity Analysis

CV of 1.25 and 0.05 w/v% formulations were 0.8 and 1.4%, respectively. The results satisfied criteria for judgment.

- (2) Stability Analysis
  - a) 1.25 w/v% Formulation

At immediately after preparation, R.N. were 96.0 to 97.6%.

At 5 days after preparation, R.N. was 99.2%, and R.P. was 102%.

At 9 days after preparation, R.N. was 97.6%, and R.P. was 101%.

All the results of R.N. and R.P. satisfied criteria for judgment.

b) 0.05 w/v% Formulation

At immediately after preparation, R.N. were 95.6 to 98.2%.

At 5 days after preparation, R.N. was 99.4%, and R.P. was 102%.

At 9 days after preparation, R.N. was 98.0%, and R.P. was 101%.

All the results of R.N. and R.P. satisfied criteria for judgment.

2) Concentration Analysis

The results of concentration analysis of the test substance formulation are shown in Table 2.

R.N. of 1.25, 0.25 and 0.05 w/v% dose formulations were 98.4 to 99.2%. All the results satisfied criteria for judgment.

## 2. DISCUSSION

The test substance was stable during the dosing period of subject study.

The test substance in 1.25 and 0.05 w/v% formulations was stable for 8 days after preparation at cold and dark place and showed good homogeneity. The concentration of test substance in 1.25, 0.25 and 0.05 w/v% dose formulations for subject study was acceptable level.

Nominal cone. (w/v%)	Time point of measurement	Layer of measurement	Actual cone. (w/v%)	R.N. (%)	Mean conc. (w/v%)	R.P. (%)	CV (%)
Immediatel after	Immediately	Upper	1.21	96.8			
	after preparation	Middle	1.22	97.6	1.21	-	0.8
		Lower	1.20	96.0			
1.25 1.25 9 da afte prepar	5 days after preparation	Middle	1.24	99.2	-	102	1
	9 days after preparation	Middle	1.22	97.6	-	101	-
0.05	Immediately	Upper	0.0489	97.8			
	after	Middle	0.0478	95.6	0.0486	-	1.4
	preparation	Lower	0.0491	98.2			
	5 days after preparation	Middle	0.0497	99.4	_	102	-
	9 days after preparation	Middle	0.0490	98.0	_	101	-

 Table 1
 Homogeneity and stability analyses of the test substance formulation

R.N.: Rate to the nominal concentration

R.P.: Rate to the concentration measured immediately after preparation

CV: Coefficient of variation

Date of analysis	Nominal cone. (w/v%)	Actual cone. (w/v%)	R.N. (%)
January 22, 2007	1.25	1.23	98.4
	0.25	0.247	98.8
	0.05	0.0496	99.2

Table 2Concentration analysis of the dose formulation

R.N.: Rate to the nominal concentration

X18-0836



Figure 1 IR spectrum measured prior to the administration period



Figure 2 IR spectrum measured after the end of the administration period



Reference 1 IR spectrum provided by the sponsor

# APPENDIX2

.

-----

----

# "HISTOPATHOLOGICAL PHOTOS"



Photo. 1 Incisor of a female rat from vehicle control group. Normal. No. 31 animal. HE. ×180.



Photo. 2 Incisor of a female rat from 125 mg/kg/day group.
 Decreased iron pigments and irregular alignment of ameloblasts at maturation stage.
 No. 54 animal. HE. ×180.



Photo. 3 Incisor of a female rat from 125 mg/kg/day group (recovery). Irregular alignment of papillary layer. No. 57 animal. HE. ×180.



Photo. 4 Liver of a female rat from vehicle control group.Normal.No. 33 animal. HE. ×180.



Photo. 5 Liver of a female rat from 125 mg/kg/day group. Diffuse hypertrophy of hepatocytes. No. 53 animal. HE. ×180.



Photo. 6 Liver of a male rat from vehicle control group. Normal.

No. 2 animal. HE. ×360.



Photo. 7 Liver of a male rat from 125 mg/kg/day group.
 Periportal hypertrophy and prominent nucleoli of hepatocytes.
 No. 22 animal. HE. ×360.